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ABSTRACT 

A financial cash flow for wind turbines based on a energy entity's tax structure. 

Using statistical regression of various wind turbines and wind maps, a theoretical model for 

energy output was calculated. The turbines were separated by the rated size of the turbine. 

With the theoretical model, financial output was generated for four different types of tax 

structures. A total of eight test cases were simulated. Special consideration was given to the 

impact of Production Tax Credits (PTC) and Renewable Energy Production Incentives 

(REP!). The object is to determine what type of business and tax structure would have the 

greatest potential impact on a local or rural community. 
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CHAPTER 1. INTRODUCTION 

Since the I 990' s, wind energy and wind turbines have been increasing. Due to this 

development, several policy questions have arisen. The first question is whether wind energy 

is feasible to develop. If wind development is unfeasible, relative to other alternatives for 

electricity generation, should tax credits/incentives or government subsidies be used to 

encourage the development? In addition, should wind development be open to all or should 

certain business structures be given preferential incentives? Policymakers, government 

officials, and leaders are searching and examining viable solutions to these questions. 

Increase in Future Energy Consumption 

By the year 2020, 363 gigawatts of new generating capacity will be needed in the 

United States to meet current and increased consumption and to replace retired electricity 

generators (NREL 2001). Since 1987, total consumption of energy in the state of Iowa has 

increased an average of 2.1 percent (Iowa DNR 2004). Since 1979, the consumption of coal 

has increased by 89.6 percent and an average of 4.5 percent (Iowa DNR 2004). 

Table 1. Expected annual percent increase of electricity usage in the Unjted States 

Sector Percent increase per year from 1997 - 2020 
Residential 1.6 Percent 
Commercial 1.4 Percent 
Industrial 1.1 Percent 

(NREL 2001) 

US Insecurities and Dependency on Imported Oil 

With the war on terrori sm, especially in the Middle East, government officials are 

concerned about U.S. energy prices and security. The Department of Homeland Security has 

cited concerns over the security of oil reserves, nuclear power plants, and the disposal of 
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nuclear waste (NNSA 2004). One consideration is the United State's dependency on 

imported oil, and the vulnerability to decisions made by OPEC. 

In 1976, the United States imported 36 percent of the domestic oil used in the United 

States, while in 2000 it increased to 55 percent (energy.gov 2001). The Department of 

Energy (DOE) predicts by 2020, the United States will be 65 percent dependant on imported 

oil. This increase is the result of decreased domestic production and increased imports. For 

example, since 1992, the production of domestic oil has fallen 17 percent, while 

consumption has increased 14 percent. Since 1990, the consumption of natural gas in Iowa 

has increased by an average of 2.2 percent (Iowa DNR 2004). 

Fluctuation of Energy Prices 

The demand for electricity, gasoline, and power has been steadily increasing over the 

last decade in the United States. In one eastern state, the price of heating oil went from $0.98 

per gallon in October 1999, to $2.03 by February 2000 - a 107 percent increase (Energy 

Supply and Demand 2000). From 1977 to 1987, energy prices in Iowa have doubled (Iowa 

DNR 2004). The price of natural gas increased an average of 4.7 percent for the residential 

sector. An average of 9 .1 percent for industrial sector, and an average of 4.9 percent for the 

commercial sector (Iowa DNR 2004). Partly due to the United State's economic growth 

during the 1990's, there has been an increased demand for electrical products, air travel, and 

the less fuel-efficient sport utility vehicles (Energy Supply and Demand 2000). The 

increased price of natural gas has Jed to increased production costs for fanners, since natural 

gas is the primary ingredient for the fertilizer anhydrous ammonia. As the price of natural 

gas increases, the price of production increases for fanners and households. 
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Power Outages and Shortages 

Much of Southeast Canada and the Northeast U.S. from New York to Ohio 

experienced a black out in August 2003. The blackout was caused by inadequate 

transmission grid capacity and management issues (GAO 2003). Similarly, some 

geographical parts of the United States, such as California, experienced rolling blackouts 

during the summer of 2001. At that time, 63 percent of all energy was supplied by 

hydropower for the states of Washington, Oregon, Idaho, and Montana (Mapes 12 June). 

According to the National Weather Service, during the summer of 2001 , the Cascade 

Mountain Range snow pack was 55 to 65 percent below normal, creating a drought in 

Washington and a shortage of hydroelectricity in the Pacific Northwest (Mapes 12 June). 

Demand for Environmentally Friendly Energy Sources 

Consumers are requesting clean and green energy alternatives and programs from 

their electric utilities. Public utility commissions and state policy makers are increasingly 

requiring certain electric utilities to offer such programs. States such as Iowa, Minnesota, 

Montana, and Washington all require certain utilities to allow utility customers to buy power 

generated from renewable energy sources often referred to as "green power,, (DSIRE 2003). 

Also, most states require utility green pricing programs (DSIRE 2003). In addition, 18 states 

require that a certain percentage of overall energy from a utility be generated from renewable 

energy sources (DSIRE 2003). Over the past few years, the technology has been developed, 

researched, and tested in order to have the cost of wind energy able to compete with other 

more conventional forms of energy, such as, coal, natural gas, nuclear power, and 

hydroelectricity. 
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Wind Powering America 

The United States Department of Energy has developed a national plan with specific 

goals for increasing wind energy production. 

• Provide 5% of the nation' s electricity from wind by 2020 

• Provide 500 megawatts (MW) of the nation's electricity from wind by 2005 

• Provide 10,000 MW of the nation's electricity from wind by 2010 

• Increase the number of the states with at least 20 MW of wind generation to 16 

states by 2005 and at least 24 states by 2010 

• Increase the consumption of wind power by the federal government to 5% by 

2010 

Rural America Vitality 

In addition, policymakers and rural interest groups are searching for ways to increase 

the economic viability of rural areas, especially for communities with a high potential for 

wind energy and heavy dependence on agriculture. As the number of wind farms increase, 

community leaders are interested in the economic benefits retained in the local economy. 

The construction of wind farms increase temporary and permanent jobs, generate property 

taxes, increased revenues for landowners, and generate operating margins for owners or 

investors. Wind energy has the potential to replace external purchases of coal with local area 

purchases of renewable resources, which can be a significant economic boost for some rural 

communities in the United States. 
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Problem Statement 

The objective of this thesis is to analyze alternative business structures in the context 

of current policy incentives in order to determine the approaches to wind energy 

development that would generate the greatest level of positive financial returns and rural 

community fiscal impacts. As a result due to the expected increase in energy consumption, 

United State' s security and dependency on imported oil, fluctuation of energy prices, power 

outages and shortages, demand for environmental1y friendly energy sources, Department of 

Energy' s Wind Powering America initiative, and sustaining rural America vitality, a study 

on the financial cash flow from wind energy given different tax and business structures will 

be conducted based on: 

1. A review of existing fiscal models and assess for limitations 

2. Collecting data relevant for conducting a financial analysis of wind energy 

3. Developing an internet based financial model 

4. Using a financial model to analyze alternative combinations of business structures 

and policy incentives. 
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CHAPTER 2. REVIEW OF LITERATURE 

A search of academic literature, government web sites, private web sites, and other 

printed material revealed the inadequacy of material related to a general wind energy 

financial model. Three main components were searched within the literature: discussions of 

turbine data, energy generation calculations, and financial information for different industry 

sectors. There was an attempt to find studies that encompass all three concepts. 

Current Models 

As the desire and need for wind energy increases, units of government, private 

entrepreneurs, and utilities are looking for simple and inexpensive models to analyze 

economic consequences. The Danish Wind Turbine Industry Association provides a wind 

energy economics internet-based calculator. The National Renewable Energy Laboratory 

(NREL), a DOE government research laboratory based in Colorado, has developed a wind 

energy financial model, the RET Finance Model. The efforts ofNREL are partially due to 

the DOE's Wind Powering America (WPA) initiative. 

The Iowa Energy Center, through its web site, provides wind speed data for 

communities in the state of Iowa. The web site, allows the user to specify the wind turbine 

from a list of turbines and receive exact wind speeds for a given altitude. By allowing the 

user to specify the exact turbine, the energy output is more accurate. The American Wind 

Energy Association (A WEA) and the Danish Wind Turbine Industry Association (Wind 

Energy 2004) web sites also provide useful information about wind turbines and wind 

energy. These two sites provide most of the necessary information regarding wind turbines, 
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their components, Betz' Law, engineering aspects, and d ifferent wind speed probability 

distributions (AWEA 2004 and Wind Energy 2004). 

Wind turbine manufacturer web sites provide free wind turbine specifications. This 

allows analysts to obtain information on possible turbines for wind energy sites. However, 

the web sites usually do not provide cost information. Despite this absence, these web sites 

provide technical engineering data that is often beyond the scope of the user such as detailed 

electrical, mechanical, and engineering information. 

Turbine Data 

Turbine data such as rotor diameter, turbine height, and the maximum generation 

rating of the turbine is necessary to calculate energy production. Ideally, knowing the exact 

turbine data would allow for the most accurate financial output calculations. 

The rotor diameter is important because it generates the wind energy production per 

square meter or foot. The rotor diameter is also directly proportional to the height of the 

turbine. Most land-based or utility sized turbines have rotor diameters that exceed 40 meters, 

and can reach 90 meters, such as the Nordex N90-2300, which has a rotor diameter of90 

meters. (Nordex 2003). 

The rating of the turbine gives the user the maximum potential energy that can be 

produced in one hour. The rated speed is the point when the wind speed allows for maximum 

energy production. If a wind turbine is rated at 750 kW, to achieve 750 kWh, the speed of 

the wind must be equal or greater than the rated speed. 

The final turbine variable of importance is the height of the turbine, which is needed 

to provide the best wind speed estimates. The variation in turbine height can greatly affect 

the wind speed, thus affecting the energy production, which in turn would affect overall 
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revenues and the profitability of the turbine. In addition, increased height increases the 

overall turbine cost. ln most cases, the turbine height begins at 50 meters, and may go up to 

100 meters (GE Power and Nordex 2004). 

Wind Speed 

The more specific the geographic and spatial information obtained, the higher degree 

of accuracy will be reflected in the financial output, since the financial output is dependant 

on taxes, financial incentives, and economic viability. Spatial characteristics include 

environmental and ecological information, with the distance from distribution and 

transmission lines, and the distance from energy consumption regions. 

Within certain geographical conditions, energy production can be optimized. Several 

areas in Iowa meet the necessary conditions for optimal wind energy production. Wind 

speeds are classified into seven different classes by meters per second (mis) (Wind Energy 

2004). 

Table 2. Wind class 

Class at 50 Beginning speed Ending Speed 
meters 

1 0 m/ s <5.6 m/s 
2 5.6 m/s 6.4 m/s 
3 6.4 m/s 7.0 m/ s 
4 7 . 0 m/s 7.5 m/s 
5 7.5 m/s 8.0 m/ s 
6 8.0 m/s 8 . 8 m/s 
7 >8.8 m/ s 

(NWTC 1993) meters per second (mis) 

Obstacles, such as trees, buildings, natural earth formations, silos, or other objects 

that impede the flow of the air, should be avoided in site selection. States in the Midwest, 

such as Iowa, are ideal because many locations have few or no wind obstacles. 
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Another way to optimize the location of a wind farm is to take advantage of natural 

ways in which the air speed is increased. One option is to place wind turbines in a natural 

tunnel. The wind turbine is placed between two tall objects, forcing the air to compress, and 

increasing the speed as it passes through the tunnel. Some care should be taken in locating 

the turbine in a tunnel, placing it where there is turbulence may outweigh the effects of the 

tunnel (Wind Energy 2004). 

Another method of increasing wind speed is to place the turbine on a gently sloped 

hill. As the air reaches the hill, the air is compressed and the speed increases at higher 

elevations as the air expands on the hill. If the hill is too steep, however, there will be 

instances of turbulence in the airflow, which may negate the positive effects of the hill on 

increasing wind speeds. Given the current technology of wind turbines, it is suggested that 

the average wind speed should exceed 7 meters per second (mis) or 15.7 mph at 50 meters. 

Energy production will remain constant when the wind speeds are equal to or exceed 

the rated speed. Energy production stops when wind speeds reach the cut out speed. 

Typically, a wind turbine with a cut in speed of three m/s will generate electricity 90 percent 

of the time (Wind Energy 2004). The average 750 kWh wind turbine will generate two 

million kWh annually (Wind Energy 2004). 

Once a location has been selected, the arrangement or density will need to be 

determined. Since a wind turbine is generating electricity from energy in the wind, the wind 

speed leaving the turbine must be slower; this is called the wake effect. Due to the physical 

properties of energy, energy cannot be produced or consumed, only transformed. Due to the 

wake effect, the wind turbine slows the air speed down, and as a result, wind speeds will be 
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slower for a wind turbine behind another wind turbine. This is called the park effect (Wind 

Energy 2004). To either minimize the park or wake effect, turbines are often placed in a 

single line. 

Optimally, the wind turbines should be spaced as far apart from each other as 

possible in the prevailing wind direction, but due to space and cost, this is not practical or 

economically feasible. As a result, at wind fanns, the turbines are placed about ~of a mile, 

or seven rotor lengths, apart in the prevailing wind direction. The turbines should be placed 

about four-rotor lengths, or 900 feet, apart in a perpendicular direction from the prevailing 

wind. For example, if the prevailing wind comes from the south, the turbines would be 

spaced ~ of mile or seven rotor lengths, apart going north and south and about 900 feet, or 

four rotor lengths apart in the east-west direction (Wind Energy 2004). 

The height of a turbine affects the output. As the height of a turbine is changed, the 

wind speed, air pressure, and air temperature alter to the height of the turbine. The first 

possible equation is the power law relation (Archer 2003). 

(1) 

where V(z) is the wind speed at elevation z above the ground, VR is the wind speed at the 

reference or measured elevation zR, and a is the friction of coefficient, which is typically 

set at /j' . 

The second is the logarithmic law (Archer 2003) 
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(2) 

where 20 is the roughness length, which is typically set at 0.0 I meters. Both models assume 

neutral meteorological and atmospheric conditions, but they are simple to use and require 

few parameters. Below is a graph of the wind speeds from the Iowa Energy Center for 

Mason City, Iowa. 

Table 3. Turbine height vs. Wind speed 

Height (m) Speed (m/ s ) 
10 5.78 
15 6 .14 
20 6.41 
25 6.6 3 
30 6 . 8 2 
35 6.98 
40 7.12 
45 7.24 
50 7 . 36 
55 7.47 
60 7.56 
65 7.66 
70 7.78 
75 7.82 
BO 7.90 
85 7.97 
90 8.04 
95 8.10 

100 8 . 1 7 
105 8 .23 
110 8.28 
115 8 .34 
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Turbine height vs. Wind speed 
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Figure 1. Turbine height vs . Wind speed 

Instead of using the average wind speed, the American Wind Energy Association 

uses the Weibull distribution, while Archer (2003) , Michael Beenstock (1995), and 

Renewable Resource Data Center (2003) use the Rayleigh Distribution. The Weibull or 

Rayleigh Distributions are thought to be more accurate at high wind speed sites. The 

distributions show that the wind energy is not constant and fluctuates, which determine the 

energy generation. 

However due to environmental concerns, not all suitable sites with the necessary 

wind speeds may be used for wind turbine farms. One key concern of many opponents and 

proponents of wind turbine is the environmental impact of wind turbines. Some areas of 

concern involved with wind turbine farms are the killing of birds, loss of habitat for flora and 

fauna, and protected wildlife, especially endangered species (Rogers 25 June). Some 
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restricted areas include national parks, monuments, wi ldli fe refuges, wilderness areas, and 

other protected land. Some of the other environmental concerns are migration and nesting of 

birds, nearby animal habitat, nearby scientific laboratories, and the reduction of air pollutants 

(Adams 1986). The Environmental Protection Agency (EPA) has concluded that burning 

fossil fuels for energy releases two-thirds of the United State 's sulfur dioxide emissions and 

one-third of the nation ' s nitrogen oxide and carbon dioxide emissions. 

There is also apprehension over the aesthetics and visibility of large-scale wind 

farms. This issue will pose problems for the individuals who live in high-density population 

areas who wish to place a wind turbine on their property. For those in rural areas, it may be a 

more feasible source of energy. In rural or agriculture areas, there is anxiety about the 

destruction of landscape and current uninhibited view. 1n addition, legal issues such as 

zoning and visual aesthetics can be obstacles. Some regions have created zoning restrictions 

regarding the presence of wind turbines, especially utility scale turbines or wind turbine 

farms (A WEA 2004). 

Given these restrictions, there is an estimated 6 percent of the contiguous United 

States, or 460,000 kilometers, that is available for wind energy production of power class 4 

or higher. This land has the potential to generate 500,000 MW of electricity. Iowa has 

enough land area to produce 5.2 percent of the United States electricity usage (National 

Wind Technology Center 2003). 

The National Renewable Energy Laboratory, through the Pacific Northwest Energy 

Lab, has conducted and completed wind energy maps for all 50 states. As a result, with the 

wind maps, there is an ability to derive the potential wind energy for any given site in the 

United States. Similarly, the Iowa Energy Center has conducted a thorough wind energy 
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evaluation. Due to this evaluation, detailed wind speeds and wind energy output can be 

derived for each community and local area in the state of Iowa. 

Energy Generation 

It is important to remember that wind energy is not an on-demand source of energy. 

As a result, it must either be stored, or managed as part of an energy portfolio, such as coal, 

hydroelectricity, nuclear power, or natural gas. To determine the amount of electricity 

generated by a given wind turbine, use the following power equation (Iowa Energy Center 

2004): 

l W=-xpxAxV 3 

2 
(3) 

where Wequals the number of watts (not kilowatts), A is the swept area by the rotor 

measured in m2
, and Vis the speed of the wind calculated in mis, usually determined from 

wind measuring or testing sites (Iowa Energy Center 2004). Where p equals air density, 

P equals pressure, and T equals temperature (Iowa Energy Center 2004). 

(1.325 x P) 
p=~--~ 

T 
(4) 

The swept area of a rotor is calculated by using the equation for a circle where r is 

measured in meters. 

A= ;r x r 2 (5) 

In a similar equation by Beenstock ( 1995), the energy power equation is 

E=kV 3 (6) 
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with k being a technical constant, which is dependant on air pressure, size of turbine, and 

height of the turbine. The American Wind Energy Association defines the wind energy 

equation to be 

W = (pxAx V3 x Ng x Nb Le 
2000 p 

(7) 

and when using the Beenstock method 

k = f{p,A,Ng,Nb,Cp) (8) 

Each geographical site and wind turbine has different annual outputs and power 

curves. The annual output is determined by the hour probability distribution at a given wind 

speed. The Weibull or Rayleigh distribution or the mean of the wind speed is important in 

this case. Equation 7 assumes the wind speed is between the cut in and cut out speeds. Since 

the wind speed does not always flow between cut in and cut out speeds, it is important that 

other hours be taken into account. Wind turbines generate electricity when the wind speed 

exceeds the cut in speed and until the wind speed reaches the cut out speed. The cut in speed 

is the minimum wind speed for the wind turbine to generate electricity. 

Both Ng and Nb are manufacturer constants on the generator efficiency and 

gearbox/bearing efficiency and are expressed as percents and where Cp is the coefficient of 

performance. According to the Betz Limit, theoretically, Cp can be no higher than 0.59. The 

Betz Limit or Betz Law was first formulated by German Albert Betz in 1919 in his book 

"Wind Energy" (Gripe, 152). It states that the more kinetic energy a wind turbine derives 

from the wind, the more wind speed will be decreased. If all the kinetic energy were 

extracted from the wind, the passing wind would have a speed of zero. Albert Betz 
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determined Lhat a maximum of 16/27 or 59 percent of the kinetic energy in the wind could be 

converted into mechanical energy. The limit is reached when the wind speed leaving the 

wind turbine is one-third of the wind speed entering the wind turbine 

Financial Data 

The Database of State Incentives for Renewable Energy provides information on 50 

states regarding different financial incentives not only for wind energy, but also other types 

of renewable energy such as solar/photovoltaic, hydro, biomass, and ethanol. 

Pricing 

Given the nature of any commodity, the price of energy is constantly fluctuating. As 

mentioned earlier, the price of natural gas increased I 07 percent in five months in one 

eastern U.S. state. Similarly, the price of energy from alternative sources may also change 

due to supply and demand factors . Models such as the one provided by the Danish Wind 

Turbine Industry Association use a single fixed price to calculate the revenue. According to 

Blunder, Crist, Gale, Goodale, and Wind (2004), the price will constantly fluctuate, and as a 

result, the models should represent a constant change in price. 

Revenue 

Wind energy revenue can be a part of a larger business revenue portfolio or 

diversification. As a result, the revenue from wind energy is a portion of the overall revenue 

for some entities (Blunder, Crist, and Gale 2004). For example, for investor owned utilities, 

wind energy may be part of a larger energy portfolio as a method to diversify and reduce risk 

(Blunder, Crist, and Gale 2004). This may also apply to murucipal and rural electric 

cooperatives (Global Energy Concepts 2001). The revenue generated will be a function of 

the energy price and the quantity of energy (Blunder, Crist, and Gale 2004). 
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Construction Costs 

The cost of construction includes the cost of the turbine, interconnection, 

transmission, and access costs, planning legal, engineering, and administration management, 

and any grants provided by state or federal governments. The cost of the turbine can be 

$1 ,000 per kW (Wind Energy 2004) or higher (Blunder, Crist, and Gale 2004). 

Certain entities are eligible for grants from local, state, or federal government 

agencies (DSIRE 2004 and Iowa Energy Center 2004). The state of Iowa alJows certain not-

for-profit organizations, such as schools, hospitals, and Iowa-based foundations to apply for 

pre-proposal funding, which are then eligible for grants for the project (Iowa Energy Center 

2004) 

Total Cost 

There are other costs when considering the annual cost of the turbine. Some 

additional costs include annual operation and maintenance, annual warranty costs, annual 

land payment, and the annual debt service. 

The annual land payments usually range from $2,000 to $4,000 (2004 USD) per 

turbine (Union of Concerned Scientist 2001 and Blunder, Crist, and Gale 2004). There are 

two different methods for land payments. In the first option, the landowner is paid a royalty 

fee based on the output of the turbines (Global Energy Concepts 2001). In the second option, 

the landowner is paid a fixed fee, which may also be adjusted for inflation. Market 

competition for land space from cellular phone towers, has resulted in increased land lease 

payments for wind turbines in recent years (Blunder, Crist, Gale, and Wind 2004). 

Another cost is the operation and maintenance of the turbines. This can be calculated 

in four different methods. The first method is using a percent of the turbine price. The second 
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method is using a price per kWh. The third method would be to use a fixed value. (Wind 

Energy 2004). The final method would be to use actual costs obtained from detailed records. 

Some entities may choose to contract for maintenance. In addition, turbine manufacturers 

may provide estimates of operation and maintenance costs. 

In some cases, entities purchase warranties for the turbines. For example, Waverly 

Light & Power purchased a five-year warranty on the turbines at the Storm Lake Wind 

Facility. Larger utilities, such as investor owned utilities, might have shorter warranty 

periods, due to their own employees conducting operational and maintenance work (Blunder, 

Crist, and Gale 2004). 

Each project will need a financing plan. In most instances, debt will be a part of the 

plan and annually require a debt service payment. Some entities will require an internal 

equity charge to access corporate equity from within the firm. (Blunder, Crist, and Gale 

2004). 

The financial costs often do not include the social costs. However, some models have 

compared wind energy to other forms of energy. These models do include the total costs 

being the construction costs, annual costs, and the social costs such, including environmental 

damage and national security risks (Adams 1986, Dubin 1990, Harding 1990, Hohmeyer 

1990, NREL 1995, Swenson and Eathington 2002, and Wilson 1996). 

Taxes 

In addition to the construction and annual costs, some entities will also pay taxes at 

various government levels. Each industrial sector has a different tax structure. A 

municipality does not pay federal, state, or local income, sales, or property taxes. As result, 

their overall operating margin tends to be higher (Wind 2004). A rural electric cooperative 
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(REC) only pays the corporate income tax if more than 15 percent of their income comes 

from non-cooperative sources. As an REC, the tax structure allows a certain percentage to be 

paid as dividends to cooperative members, through which the members pay as income tax 

(Goodale 2004). 

State and local property taxes may or may not be included in cash flow models. The 

Danish Wind Turbine Industry Association web site does not include this variable. The 

NREL site does calculate state and local property taxes. In the NREL model, the state 

income tax is fixed at 7.7 percent. It is unclear if it is 7.7 percent of the taxable income, or if 

it is 7.7 percent of federal income tax. It also has a fixed local property tax of l percent of the 

total project cost. 

Many states offer some financial incentives. This may come in the form of a sales tax 

deduction on wind turbines, construction grants, low or no interest loans, expenditures, 

abatement from property taxes, and production tax credits/incentives. For example, the state 

of Iowa offers a local option of a graduated property tax abatement and sales tax exemption 

on wind energy. Iowa State Code 427.B.26 provides a graduated abatement in counties that 

have adopted the Wind Conversion District Ordinance. All wind turbines are applicable 

regardless of the owner. According to the ordinance, the abatement proceeds as follows. The 

local property tax is equal to the rural consolidated levy rate, which is usually valued around 

$23 to $25 per $1,000 valuation multiplied by the assessed value (net acquisition costs or the 

total construction costs). For the first year, the property taxes are zero. For the second year, 

the property tax is five percent of the net acquisition costs. In the third year, the rate is 10 

percent, the fourth year is 15 percent, the fifth year is 20 percent, the sixth year is 25 percent, 

and the seventh year is 30 percent. The assessed value is capped at 30 percent there after. 
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However, if the county does not adopt the ordinance, the turbine is taxed at 100% of 

the market value, instead of the schedule according to the ordinance. Knowing this, large-

scale wind developers will only develop wind turbines in counties that have passed the 

ordinance. In addition, wind turbines are exempt from the 437 A provisions of 0.0006 cents 

per kWh tax. 

Production Tax Credit and Renewable Energy Production Incentive 

Each industrial sector is eligible for a federal tax credit or incentive. A Municipal 

Utility (MU) and Rural Electric Cooperative (REC) (nonprofit utilities) are eligible for a 

Renewable Energy Production Incentive (REPI), part of the Energy Policy Act of 1992. The 

credit started at 1.5 cents per kWh (1993 USD) and is annually adjusted for inflation. In 

2003, when the tax incentive expired, the credit was at $0.018 cents per kWh generated from 

renewable energy sources (Office of Power Technologies 2004). This tax incentlve maybe a 

key component in making wind energy and other renewable energy forms cost efficient and 

competitive with other more conventional energy forms. However, the REPl is only 

applicable for the first 10 years of the turbine. 

As in the REPI, the Production Tax Credit was created from the Energy Policy Act of 

1992. At the end of2003, the PTC was at $0.018 per kWh (Windustry 2004). It is also only 

applicable for the fust 10 years of the turbine. Both IOUs and RECs are eligible for a 

Production Tax Credit (PTC) (Blunder, Crist, Gale, and Goodale 2004). Even if an entity 

qualifies for tax credits/incentives, it may not be able to take full advantage of the tax credit 

because the entity may not have enough passive income which is required to access the tax 

credit. Increasingly, wind farm developers are examining "rent seeking" scenarios where 

third party investors that possess sufficient tax liability are involved in the construction of 
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wind turbines. In some states, such as Minnesota and Washington, a state PTC or REPI is 

available for qualifying entities. This is intended to offset the cost of wind energy production 

(DSIRE 2003). 

The California Energy Commission compared the costs of the different types of 

energy and they found the benefits of the Federal Production Tax Credit (CEC 1996). The 

study concluded that wind energy could be competitive with other more conventional forms 

of energy under certain circumstances. 

Table 4. Levelized fuel costs 

Type of Fuel Levelized costs (cents/kWh) (1996) 
Coal 4.8-5.5 
Hydro 3.9-4.4 
Biomass 5.1-11.3 
Nuclear 5.8-11.6 
Wind (without 4.0-6.0 
PTC) 
Wind (with PTC) 3.3 - 5.3 

(CEC 1996) 

Third Party Investment 

In cases where the primary investor is not eligible or financially cannot use all of the 

federal tax credits, a third party investor may be involved in forming a separate business 

entity. An example would be for a municipality, investor owned utility, or an REC to form a 

Limited Liability Company (LLC) with another party, that invests a percent in the equity of 

the wind turbine project (Wind 2004). A possible scenario for such an investment may occur 

if the original investor is a non-profit entity or an entity with a small amount of federal 

taxable income. The third party investor would be able to use the unused amount of turbine 

depreciation. 
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Another scenario for a third party investor would be if the primary investing entity 

were not eligible to make complete use of eligible PTC (Wind 2004). According to the IRS 

code, wind turbine investors are only eligible and able to apply the production tax credits to 

offset passive income. By involving a third party, the PTC is more fully utilized and the 

potential payback period may also decrease due to the decreased amount of initial investment 

required by the primary investor. 

The third party may involve several investors who participate in the formation of a 

Limited Liability Company (LLC). One consultant also suggested this business structure for 

use in communities where large individual investors are not available, or if the community 

desires to keep the financial resources and equity within the community. 

Useful Life 

The usefuJ life is the life expectancy of the turbine. This is not the same as the turbine 

depreciation or the Turbine Finance Period. The usual life expectancy or the useful life is 

typically between 20 and 30 years. The National Renewable Energy Laboratory and other 

pro-wind energy groups suggest that wind turbines may have a life expectancy of up to 35 

years. However, representatives from an investor owned utility currently planning to 

construct a 200+ MW wind turbine farm, indicate using a life expectancy of I 5 - 20 years. 

The rationale was that all the electronics inside the wind turbine would likely need to be 

replaced with more efficient electronic components within 20 years (Blunder, Crist, and Gale 

2004). 

Economic Benefits 

Due to the different ownership patterns and tax/incentive structures, each type of 

business entity will have a different impact on a community. For each set of 10 to 15 wind 
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turbines, current industry standards are to employ one person for operation and maintenance 

(Global Energy Concepts 2001). The subsequent employees hired, such as operation and 

maintenance employees, create local economic benefits and tax revenue. This results in 

personal income tax for the state and federal governments. In one example, a new wind 

turbine farm is to be installed in northern Iowa by an investor owned utility. They expect to 

hire 12 employees to maintain 180 turbines for operation and maintenance. This is a ratio of 

one employee for every 15 turbines. From the table below, (Ritsema et al 2003) the wages 

for wind energy are comparable to the wages in other electrical utility sectors. In addition, 

these jobs have higher wages when compared to the wages in the surrounding area. 
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Table 5. Wages reported for selected utility sectors and farm income' 

krob Category !Region - !Ave rage Wage for Percent Above or 
Area Job Category & !Below the Iowa 

Region - Area !Average Wage 
All Jobs (2000) Iowa 27,976 Avg . Iowa Wage 

~ 22,376 -20.0% 
INC 24,165 -13. 6% 
ISC 25,370 - 9.3% 

!All Ut ility Jobs 
(2000) Iowa 52,263 86.8% 

NW 43,705 56.2% 
INC 52,465 87.5% 
ISC 46,099 64.8% 

!Electric Services: 
ISIC Code 491X (2000) IUS 63,819 128 .1% 

Iowa 48,943 74.9% 
NW 43,736 56.3% 
INC 42 , 259 51 . 1% 
ISC 36,557 30. 7% 

Gas Services: SIC 
K::ode 492X (2000) IUS 73,268 161. 9% 

Iowa 53,907 92 . 7% 
INW 49,555 77 .1% 
INC 67,058 139.7% 
ISC 26,501 -5. 3% 

Pther Utility 
Services: USIC Code 
l493X (2000) !Us 65,0 86 132.6% 

Iowa 53,547 91. 4% 
!NW 40,975 46.5% 
INC 50,391 80 .1% 
ISC 48,505 73.4% 

INet Farm Business 
Income/Farm (2001) NW 31,247 11.7% 

INC 21,053 - 24. 7% 
SC 20,100 -28.2% 

(Iowa Workforce Development 2000) 

NW Northwest Iowa county cluster 
NC North Central Iowa county d uster 
SC South Central Iowa county cluster 
All lobs Average wage of all pavina jobs In the reaion, includlna electric and gas utility services 
All utilitv iobs All paying jobs In the electric and aas ulilltv services sector 
SIC Code 491 X All paying lobs In electric oower, distribution. and services sector 
SIC Code 492X All payina jobs in the aas production and distribution sector 
SIC Code 493X All paying jobs in other/ new combination utilities - electric power distribution. and services 

sector 
Net farm business 
income I farm 

Based on comparison of regional Farm Business Association accrual net farm income 
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Case Study: Waverly Light & Power 

In the early 1990's, Waverly Light & Power, a municipal utility, pursued adding 4 to 

7 MW of base load energy generation after 1999 (Global Energy Concepts 2001). Waverly 

Light & Power customers indicated that any new source energy should be environmentally 

friendly, even though it would be more costly than conventional forms of energy. The result 

was Waverly Light & Power owning two turbines at a Storm Lake Wind Facility. The site 

has 259 wind turbines, rated at 750 kW, and Waverly Light & Power owns two of the 50-

meter rotor diameter, 65-meter tall turbines (Global Energy Concepts 2001 ). The capital cost 

of their two turbines was $1.7 million. This would average to a little more than $1,100 per 

kW. Part of the construction costs was offset by a small grant. 

According to a report for Waverly Light & Power, the facility in Storm Lake, Iowa 

employs 25 full-time, long-tenn personnel to maintain the 259 turbines . Twenty-three were 

trained locally. In addition, more than 150 temporary jobs were created during the initial 

construction (Global Energy Concepts 2001). The entire project, starting with the 

construction of the roads, substation, and turbines until the final construction and testing was 

completed in about a year. 

Table 6. Energy production for Waverly wind turbines for 1999 

Wind Turbine Annual Energy (kWh ) Downtime (hours ) Turbine 
Availability 

210 2,160,151 495 94.. 4 % 
211 2, 133,195 555 93.7 % 

Total 4,293,347 10 9 3 94 . 0 % 

Table 7 gives a first year breakdown of each turbine and the energy generated for the 

first year in operation. The turbine availability is the amount of time the turbines were 

available to generate energy. Approximately 86 percent of the time, the turbines were 



www.manaraa.com

26 

generating energy. The average wind speed for the first year was 7.4 meters per second. 

However, it was expected that the wind speed would be 7 .6 meters per second. 
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CHAPTER 3. MODEL, METHODS, AND ASSUMPTIONS 

Analysis was conducted for three different electric utility ownership structures: 

Investor Owned Utility (IOU), Municipality, and Rural Electric Cooperative (REC). Each 

industry ownership structure potentially provides different levels of benefits due to different 

tax treatment on local, state, and federal levels, as well as different distributions of earnings. 

The model will incorporate state tax and incentive structures as the baseline and enter a 

proxy for local taxes. The model will allow the user to input specific data about a proposed 

wind energy project. There will be components for construction, operation, finance, and 

community impact. The baseline scenario will be compared to alternative scenarios related to 

ownership structure and turbine size and location. 

As part of the turbine assumptions, a stepwise regression, using the turbine rating was 

conducted to determine the wind turbine constant, for energy generation. After the 

regressions, a financial model was constructed. Given the variability of potential for 

renewable power generation, the overall revenue generation from alternative technologies 

will also vary. Each geographic location has the flexibility for different tax and 

subsidy/credit assumptions, thus leading to different conclusions for each model. 

This particular model incorporates numerous financial statement characteristics. The 

key attributes that were considered were cost per kWh, income per kWh generated, and 

cumulative cash flows. In addition, cash flows are affected by state and federal government 

taxes and incentives. The model was generated using data from Iowa, but is intended to be 

applicable to states that have strong wind energy potential. 
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Turbine Variables 

The first of set of variables defined in the spreadsheet model are the turbine data 

variables. It is expected that the user will have some information about the turbine, such as 

rotor diameter, rated output, and turbine tower height. 

The rotor diameter Z D; can be entered as any value. For this model , Z D; was set at 

60 meters for four test cases. The diameter was changed to 80 meters to show the effects of a 

larger wind turbine. 

The rating of the turbine ZR can also be entered as any value. For this model, the 

default value is set at l 000 kW. Additional simulations were conducted setting ZR to 1500 

kW to show the effects of a larger wind turbine. 

The height of the turbine Z 11 , which can also be entered as any value was set at a 

default value of 60 meters for this model. The model was simulated at both 60 meters and 80 

meters. It was tested at 80 meters to show the effects of a larger turbine. 

Wind Speed 

The model uses maps generated by the Renewable Resource Data Center, which 

conducted tests to determine wind speeds at 50 meters. The Rayleigh distributions, 

calculated by the Renewable Resource Data Center, were used as the mean wind speed 

(Renewable Resources Data Center 2003). The equation below was selected due to the 

simplicity and for the removal of potential unknown variables. The wind speeds were 

estimated after the knowing the turbine height by using the equation below (Archer 2003). 

(9) 



www.manaraa.com

29 

was modified to 

(10) 

where V(z) is the wind speed at elevation Z H above the ground, VR is the wind speed at the 

reference or measured elevation zR, and a is the friction of coefficient, which was set at 

)4 . 
The wind maps provided the values for V50 . For this model, it was assumed that V50 

was set to 7.0 meters per second for four test cases and V50 was set to 7.5 meters per second 

for an additional four test cases, using the wind speeds from Table 3 for the given altitude 

(Renewable Resources Data Center 2003 ). 

(11) 

Vi= v,,, -0.5 (12) 

(13) 

The Renewable Resources Data Center provides wind speeds at 50 meters and 

equation 11 is used to determine the wind speed at heights other than 50 meters. As 

mentioned earlier, several different equations could have been used to determine wind 

speeds for given heights. Equation 11 is broad and geographically general equation and the 

maps only gave estimates. As a result, a model that was broader was needed to cover the 

potential inaccuracies of equation 11. In addition, since the wind speed is a key component 

in the overall revenue, three models were given for each wind speed, low, medium, and high. 

After an initial wind speed was calculated, the wind speed was adjusted for the variability 
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and spatial differences within a wind class, by adjusting initial the wind speed ~ by ± 0.5 

meters per second or approximately 1.1 miles per hour. This is to give an approximate 

energy production from a turbine for a particular spot. 

Energy Generation 

To determine the amount of electricity generated by a given wind turbine, the 

following power equation was used: 

1 W= -x p x AxV3 

2 
(14) 

where W equals the number of watts (not kilowatts), A is the swept area by the rotor 

measured in m2, and Vis the speed of the wind calculated in mis, usually determined from 

wind measuring or testing sites (Iowa Energy Center 2004). However, this assumes that all 

wind turbines have the same level of efficiency and are able to generate the same level of 

energy output. In this model , p was set at 1.22 kilograms per m3. Equation 14 also assumes 

a free flowing stream of wind and that the turbine is l 00% efficient. In addition, this assumes 

that all wind turbines have the same level of efficiency and are able to generate the same 

level of energy output. Since turbines are not I 00% efficient, additional terms must be 

included. The power equation for a wind turbine is now (A WEA): 

(15) 

In Equation 15, Ng and Nb are manufacturer constants on the generator efficiency 

and gearbox/bearing efficiency and are expressed as percents, where Cp is the coefficient of 

performance. 
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For this model, it was assumed that the turbine would be generating energy 90 

percent of the time. Since Ng, Nb , and Cp vary on the turbine and some variables are 

unknown, a variable, A. is needed to be found to correct and generalize wind turbines. The 

variable /l is to take into account for all the unknowns of the turbine. As a result, taking 

Equation ( 15) 

and substituting the values the new equation is: 

1.22 x ( ~ r x " xv? x 28382400 
kW = x A. 

1000 

A predicted A.p was calculated by using the equation below: 

/lp = Wp 

l.22x(~ r X 7' X V/ X 28382400 

1000 

(16) 

(17) 

By having the values of A., a predictor for Ap, a set of statistical regressions could be 

conducted. For Equation 17, Wp is based on the projected energy output from the Iowa 

Energy Center. 

Determining A.p 

By using A.p, it is unnecessary to determine the different wind speeds and the nwnber 

of hours at each speed. The A.p takes this into account, and removes the complexity of 

determining the number of hours and wind speed. The variableA.p is determined using a 

statistical regression of wind turbines at different elevations from SAS. Some of the data for 
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this model was generated by using estimates from the Iowa Energy Center's Wind 

Assessment program. The Iowa Energy Center used a formula to determine energy output 

given the turbine, turbine height, and the wind speed at the turbine height. All the data was 

analyzed for a single site in Mason City, Iowa, where a large utility wind farm currently 

stands. Each data point consisted of the turbine rating, turbine height, turbine rotor diameter, 

wind speed at that height, and estimated energy production, for a total 250 observations. 

An initial regression was calculated to determine the ability to obtain a single 

regression equation. It was at this point that a single regression equation was not going to be 

adequate, and a different approach was pursued. It was determined that the turbine rating was 

the most significant variable in determining the wind turbine output. As a result, the wind 

turbine rating was broken down into four "classes." Since the energy production of a turbine 

is based on the rating and the number of hours, a general model was used to calculate output. 

As a result, fom different regressions were formulated to make the model as complete as 

possible: small, medium, large, and utility. 

The following regressions were conducted using SAS by using stepwise regression. 

Wind turbines with a turbine rating from 1 kW to 50 kW were measured from l 0 meters to 

45 meters in 5-meter intervals. The wind turbines that were rated 50 kW to 250 kW were 

also measured from 10 meters to 45 meters in 5-meter intervals. Wind turbines with a rating 

of 300 kW to 750 kW were measured from 10 meters to 85 meters in 5-meter intervals, and 

wind turbines with a rating from 750 kW to 2500 kW were measured from 50 meters to 115 

meters at 5-meter intervals. Below is a table of default results for the model. 
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Table 7. Expected output from model for default values 

Turbine Wind Speed Energy Production 
Height (m) (mi s) (kWh) 
40 6.78 1979786 
45 6.89 2042269 
50 7.00 2104479 
55 7.09 2155096 
60 7.18 2205388 
65 7.26 2249768 
70 7.34 2293792 
75 7.41 2331984 
80 7.48 2369834 

Wind speed vs. Energy generation 

2400000 

2350000 

2300000 

11 2250000 

s 2200000 

11 2150000 

J 2100000 

I 
2050000 

2000000 

1950000 
6 .7 6 .8 6 .9 7 7 . 1 7.2 7 .3 7 4 

Wind apeed (m/11) 
L 

Figure 2. Wind Speed vs. Energy generation 
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Turbine height vs. Energy generation 
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Figure 3. Turbine height vs. Energy generation 
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Table 8. Regression for all wind turbines 

k rated D v h 

k l 0 . 40576 0 . 43038 0 . 29137 0 . 29695 

Constant < .0001 <. 0001 < . 0001 <.0001 

rated 0.40576 1 0 . 94822 0 . 63603 0.66512 

Rated Turbine <.0001 <.0001 <.0001 <.0001 

D 0 .43038 0.94822 l 0.67666 0.70125 

Diameter < . 0001 < . 0001 < . 0001 c:.0001 

v 0.29137 0 . 63603 0. 67666 l 0 . 96432 

Speed <. 0001 <.0001 < .0001 <. 0001 

h 0.29 695 0 . 66512 0 . 70125 0.96432 1 

Height <. 0001 <.0001 < . 0001 <.0001 

R- S are Coeff Var Root MSE F- Value 

0.376061 3 4 . 25616 0 . 000021 24 . 41 <.00 01 

Standard 
Parameter Estimate Error t - value Pr> I ti 

Intercept 0 . 0000952409 0 . 00001836 5 . 19 <.0001 

D - 0 .0000027381 0 . 00000079 -3. 47 0 . 0006 

v - 0.0000051775 0.00000257 - 2 . 01 0.0453 

rated 0.0000002013 0 . 00000003 7 . 15 <.0001 

dr -0.0000000021 0 - 1.3 0.1956 

d2 0.0000000310 0.00000003 1.2 0 . 2317 

r2 0.0000000000 0 -0 .21 0.8313 

(18) 
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Table 9. Regression equation for all wind turbines 

Beta Coefficient t-value Pr > It I 

a Intercept 0.0000261780 5.19 <.0001 

flv Rotor Diameter 0.0000299787 -3.47 <.0001 

flv, Wind Speed -0.000009631 8 -2.01 < . 0001 

/JR Turbine Rating -0. 0000081721 -19.0 8 <.0001 

/JRJ) Diameter*Rating -0.0000000021 -1. 3 0.1 956 

/10 2 
Diameter Squared 0.0000000310 1.2 0.2317 

PR2 Rating Squared 0.0000000000 -0.21 0.8313 

From the table above, several variables were insignificant. As a result, a better model 

was developed using stepwise regression. From the correlation table, the turbine rating had a 

correlation on 0.40576 with k, the constant. Even though the rotor diameter had a higher 

correlation, the turbine rating had a higher t-value, and as a result, the turbine rating was 

broken down in different sections, in an attempt to find a theoretical model for predicting 

energy output without knowing the turbine coefficients. As a result, the turbine rating was 

separated into four different bins: small, medium, large, and utility. 
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Table 10. Regression for turbines rated less than 50 kW 

k rated D v h 

k 1 0.52736 0.58848 - 0.36652 - 0.3606 

Cons tan~ 0.0019 0.0004 0.0391 0 . 0426 

rated 0 . 52736 1 0.99655 0 0 

Rated Turbine 0.0019 <.0001 1 1 

D 0.58848 0.99655 1 0 0 

Diameter 0.0004 <.0001 1 1 

v - 0.36652 0 0 1 0 . 98395 

Speed 0.0391 1 1 <.0001 

h -0.36056 0 0 0.98395 1 

Height 0.0426 1 1 <.0001 

R-S are Coeff Var Root MSE F - Value 

0.991386 1 . 941292 l . 25E-06 776.88 <.0001 

Parameter Estimate Standard Error t - value Pr> I t i 

Intercept 0.0000261780 0.000004 3514 6.02 <.0001 

0 0.0000299787 0 . 0000009304 32.22 <.0001 

v -0.0000096318 0 . 0000004694 - 20 . 52 <. 0001 

rated -0.0000081721 0 . 0000004283 - 19 . 08 <.0001 

d2 0.0000001785 0.0000000 508 3 . 51 0.0016 

For turbines where ZR, the rated turbine is less than 50 kW, the equation is 

(19) 
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Table 11 . Regression equation for turbines rated Jess than 50 kW 

Beta Coefficient t-value Pr > !ti 

a Intercept 0.0000261780 6.02 < . 0001 

/30 Rotor Diameter 0.0000299787 32.22 <.000 1 

f3v, Wind Speed - 0.0000096318 -2 0 .52 <.0001 

/JR Turbine Rating - 0.0000081721 -19.08 < .0001 

/302 Diameter Squared 0.0000001785 3.51 0 .0016 
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Table 12. Regression for turbines rated greater than 50 kW and less than 250 kW 

k rated D v h d2 

k 1 - 0 . 30523 - 0 . 58982 - 0 . 161l - 0.1593 -0 . 4 938 

Constant 0 . 0555 < . 0001 0 .3207 0. 3262 0 . 0012 

rated - 0 . 30523 1 0 . 93443 0 0 0 . 97204 
Rated 
Turbine 0.0555 < . 0001 1 1 <. 0001 

D - 0.58982 0 . 93443 1 0 0 0.99164 

Diameter <. 0001 <. 0001 1 1 < .0001 

v - 0 . 1611 0 0 1 0 . 98395 0 

Speed 0.3207 1 1 <. 0001 1 

h - 0.15 929 0 0 0.98395 1 0 

Height 0.3262 1 1 <.0001 1 

d2 - 0 . 4938 0 . 97204 0 . 99164 0 0 1 
Diameter 
Squared 0.0012 <. 0001 < .0001 1 1 

R-S are Coeff Var Root MSE F - Value Pr >F 

0.997679 1.836068 l . 63E - 06 2923 .3 7 <.0001. 

Standard 
Parameter Estimate Error t -value Pr>lt l 

Intercept 0.0002331.700 0 . 0000134700 17.31 < . 0001. 

D - 0 . 0000249859 0 . 000001.2000 - 20.84 <.0001 

v -0.0000106633 0 . 0000005500 - 1.9 .5 < .0001 

rated 0.000003 9582 0 . 0000001200 33 . 72 <.0001 

rd - 0 . 0000001295 0 . 0000000000 - 42 . 53 <. 0001 

d2 0 . 0000007103 0 . 0000000400 16.34 < . 0001 

For turbines where ZR is greater than 50 kW and less than 250 kW, the equation is 

(20) 
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Table 13. Regression equation for turbines rated greater than 50 kW and less than 250 kW 

Beta Coefficient t -value Pr > I t I 

a Intercept 0.00023317000 17.31 0.00023317000 

/Jo Rotor Diameter -0. 00002498859 -20 .84 -0.0000249885 9 

f3v, Wind Speed -0.00001066330 -19 . 50 -0 . 00001066330 

/JR Turbine Rating 0.00000395820 33.72 0.00000395820 

/JRD Diameter*Rating -0.00000012950 -42.53 -0.00000012950 

/302 Diameter Squared 0.00000071030 16.34 0.00000071030 
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Table 14. Regression for turbines rated greater than 250 kW and less than 750 kW 

k rated 0 v H 

k l 0. 1462 5 0.02739 -0. 9 097 -0.9007 

Constant 0 . 1955 0.8094 <.000 1 <. 0001 

rated 0. 14625 l 0.93819 0 0 

Rated Turbine 0 . 1955 c.0001 1 1 

0 0.02739 0.93819 1 0 0 

Diameter 0.8094 <.0001 1 1 

v -0. 90969 0 0 1 0. 97257 

Speed <.0001 1 1 <.0001 

H - 0. 90072 0 0 0.97257 1 

Height <.0001 1 1 <.0001 

R-S are Coef f Var Root MSE F- Value Pr>F 

0. 95536 1 . 763095 1. 32E - 06 4 01. 28 <.000 1 

Parameter Estimate Standard Error t -value Pr>ltl 

Intercept 0 . 0001792675 0.000007924 3 22 . 62 <.0001 

D -0. 00000220 76 0. 0000004065 -5. 4 3 <.0001 

v -0.0 000086215 0.0000002312 - 37 .2 9 <.0001 

rated 0.0000000346 0 .00 00000026 13.51 <.0001 

d2 0.0000000165 0.0000000053 3 . 11 0.00 26 

For turbines where ZR is greater than 250 kW and less than 750 kW, the equation is 

(21) 
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Table 15. Regression equation for turbines rated greater than 250 kW and less than 750 kW 

Beta Coefficient t-value Pr > I t I 

a Intercept 0.0001792675 22.62 <0.0001 

/Jn Rotor Diameter -0.0000022076 -5.43 <0 . 0001 

f3v, Wind Speed -0.0000086215 - 37.29 <0.0001 

{JR Turbine Rating 0 . 0000000346 13.51 <0.0001 

/JD2 Diameter Squared 0.0000000165 3 .11 0.0026 
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Table 16. Regression for turbines rated greater than 750 kW 

k rated D v H 

k 1 0 . 11761 -0. 15289 -0.72757 -0. 70465 

Constant 0 . 2488 0 . 1329 < . 0001 < . 0001 

rated 0 . 11761 1 0.89668 0 0 . 0279 

Rated Turbine 0 . 2488 <.00 01 1 0 . 7851 

D - 0.15289 0 . 89668 1 0 0 . 03203 

Diameter 0 . 1329 < . 0001 1 0.7542 

v - 0 . 72757 0 0 1 0 . 98424 

Speed <.0001 1 1 <.0001 

H - 0 . 70465 0 . 0279 0.03203 0 . 98424 1 

Height <. 0001 0 . 7851 0 . 7542 < . 0001 

R-S are Coeff Var Root MSE F- Value Pr>F 

0.9928 88 0 . 517533 3 . 63E- 07 2117 . 45 < . 0001 

Standard 
Parameter Estimate Error t - value Pr>l tl 

Intercept 0 . 0005694858 0 . 0000128000 44 . 48 < . 0001 

D - 0 . 0000208645 0 .0000006400 -32. 62 <.0001 

v -0 . 0000100639 0 . 0000001200 - 82 .3 <. 0001 

rated 0 .0000 004543 0 . 0000000100 33 . 38 c. 0001 

dr - 0 . 0000000050 0 . 0000000000 -28 . 56 <.0001 

d2 0 . 0000001870 0 . 0000000100 - 16.82 < . 0001 

r2 0 . 0000000000 0.0000000000 30 . 62 < .0001 

For turbines where ZR is greater than 750 kW the equation is 

(22) 
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Table 17. Regression for turbines rated greater than 750 kW 

Beta Coefficient t - value Pr > It I 

a Intercept 0 . 0005694858 44.48 <0.000 1 

PD Rotor Diameter -0.0000208645 - 32.62 <0.000 1 

PR Turbine Rating 0.0000004543 33 . 38 <0.00 01 

Pv, Wind Speed -0.0000100639 - 82.30 <0 .0001 

PDR Diameter*Rating -0.00000000 5 0 - 28.56 <0.0001 

PD2 Diameter Squared 0.0000001870 30.62 <0. 0001 
-

PRz Rating Squared -0.0000000000 -16.82 <0 . 0001 

Table 18. Comparison of regressions 

F - Value R-Squared Adjusted R-Squared 
All 24.41 .3761 .3607 
Small 776.88 .9914 .9901 
Medium 2923.37 .9977 . 9973 
Large 401 .2 8 .9554 . 9530 
Utility 2117.45 .9929 .9924 

From Table 18, once the stepwise regression was completed, the R-squared value 

increased from 0.37 to at least 0.95. One possible explanation for this significant increase is 

that the regression equations are modeling the engineering calculations conducted by the 

Iowa Energy Center. Assuming that the energy production calculations by the Iowa Energy 

Center are accurate, this model would also provide an accurate model for predicting energy 

production without knowing the constants for the wind turbine. 

Pricing 

Since this model is not a pricing model, assumptions were made about actual prices. 

The price per kWh is the wholesale price that the electric generator will charge to the 

consumer or buyer of the power. Some pricing contracts vary by the minute, hour, or season. 

This model allows for three pricing options. Due to the unpredictable nature of the wholesale 

energy prices, pricing is not adjusted for inflation. One particular method may be more 
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relevant for the user depending on the information and operating conditions that are 

experienced by the user. 

The first pricing method that was used is representative of a flat contract rate. This 

approach is to define an annual average price. The user inputs a single wholesale price as 

dollar per kilowatt-hour ($/kWh). The annual average price ignores seasonal or daily 

averages. 

P; =PA (23) 

The second option is a seasonal price method, where the user inputs the average 

seasonal and non-seasonal prices. In most geographic cases, such as Iowa, a seasonal price 

would be during the summer months, where there is increased demand for electricity, and a 

non-seasonal price would be during the winter months, where the demand is less. 

Pi= S, x Psp + (1-S, )x PsNP (24) 

The third and final option is based on a daily pricing method, where the user inputs 

the average daily peak and non-peak prices. A peak price would be during the daytime when 

businesses and households have an increased demand for electricity, while non-peak would 

be during the night. The daily price equation allows the user to differentiate between 

seasonal and daily price averages. 

Pi= D, x PDP+ (1-D,)x PDNP (25) 
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Revenue 

Revenue is defined as the product of the energy generation by the wind turbine(s) and 

the price. All other business sectors and factors are ignored. The annual revenue will remain 

the same for all years, since this model assumes that the production and price remain the 

same. Since P; is not adjusted for inflation, and the energy production does not change, the 

revenue will also remain constant. While three different pricing schemes can be used, for 

testing purposes, only the annual average pricing scheme p A was used. 

R = Wxp; (26) 

P; =pA (27) 

ap, =Wx~. >0 8R vy, (28) 

Total Construction Costs 

Certain assumptions were made in this study regarding economies of scale and 

location of projects. Economies of scale regarding the number of turbines are ignored for 

simplicity. However, economies of scale w111 likely exist as the size of the turbine increases. 

In some cases, when turbines are purchased for a wind farm, there is a discount in price per 

turbine, which decreases the cost per turbine. This discount may not apply for smaller 

amount of purchases. In addition, the change of location or the transportation cost of 

transporting the wind turbine from the manufacturing site to the actual wind turbine site is 

ignored. 

The first cost function is the total construction cost. The total construction cost, Cree 

consists of three components, (1) the cost of the turbine, (2) interconnection and transmission 
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access costs ( C1 ), and (3) planning, legal, engineering, and administration management 

(CA). The equation for the total construction cost is: 

Cree = ZR x 1300+ CA+ C1 

Turbine costs 

(29) 

The first component, the cost of the turbine itself, is calculated by using the turbine 

ratingZ R, where it is multiplied by the constant $1 ,300. The cost of the turbine may include 

transporting the turbine to the installation site. However, it may need to be added as an 

engineering cost. 

Interconnection and transmission access costs 

The next construction cost component is the cost of connecting the wind turbine(s) to 

the distribution grid C1 , and the interconnection cost. This may also include access fees to 

the transmission lines for access to wholesale electricity markets. 

Planning, legal, engineering, and administration management costs 

The next component of the cost is the planning, legal, engineering, and 

administration management costs CA . This is usually a one-time cost at the beginning of the 

decision process. This fee is usually paid to a consultant in the decision making process 

(Wind 2004). 

Finance 

The financial component includes grants, debt financing, and equity. The equity can 

come from a third party. 
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Grants received 

The first component of financing the wind turbines is the grants Cc . Since each 

model is not eligible for grants in every state, for the baseline it was assumed that the value 

of the grants is zero . 

Debt finance period 

The debt finance is based on initial amount of debt, interest rate, and length of 

payments. The debt finance period C0 r is the length of time, in years that the debt portion of 

turbine construction cost will be paid. As the length increases, the yearly payment decreases, 

but costs are spread over a longer period. As a result, the number of years before a firm has a 

positive net cash flow will also increase. 

Annual debt service 

The annual debt service C0 can be the largest percent of the total annual cost 
A 

depending on the amount of debt financed. The determining factors include the debt 

repayment period and the percent of the total construction cost , Cree that is being financed 

by debt C0 and the interest rate for the debt, C0 . As C0 and C0 increase, the value of 
p T r T 

C 0 increases. ,, 

(30) 

(31) 

(32) 



www.manaraa.com

49 

(33) 

When the annual debt service period has been completed, there is a new plateau in cash flow. 

Both C0 and CL are adjusted for inflation. As result, as long as r is not set at zero 
A A 

percent, the total costs or the ratio of cost per kWh will increase. 

(34) 

r ; ~ 1 , if there is inflation 

Since the components for revenue are W and P; , the revenue will remain the same. As long 

as r is greater than zero percent, the cost per kWh before taxes Ck, the cost per kWh will 

also increase. 

(35) 
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Third party investment 

Third party investment £ 3 was assumed to be zero percent for four alternative 

scenarios and the third party investment was set at 30 percent for an additional four 

scenarios. In addition, the annual amount of passive income was set at zero for four 

scenarios, and then it was set at $75,000 for an additional four scenarios. 

Annual Operating Costs 

The total cost per year is a function of the annual operating and maintenance costs, 

C0 , annual warranty costs Cw , annual land payment Cl , and the annual debt service 
A A A 

Cr= C0 +Cw +Cl +C0 A A A A 
(36) 

Operation and maintenance 

In this model, the operation and maintenance costs can be entered in two ways. The 

first, the method used for testing, is as a percent of the turbine rating C0 p • The percent is 

usually between 1.5 and 4 percent (Blunder, Crist, and Gale 2004). 

(37) 

(38) 

Or- ( )I I ac' = - C0 A x 1-r, - x t 
OA 

(39) 

r; ~ 1 , if there is inflation 

The second is with a fixed cost C0 F that is adjusted for inflation. 

(40) 
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ar ( )'-1 -'- = -C0 x 1 - r, x t ac F 
OF 

(41) 

r ; ~ l , if there is inflation 

Land payment 

The method used in this model is with a fixed payment CL . In this model, the land 

payment is adjusted for the rate of inflation, which can be controlled. This fixed payment 

was chosen for its simplicity and commonality. 

(42) 

ar, c (1 y-1 - -= - Lx -r; x t 
acLA 

(43) 

r ; ~ 1 , if there is inflation 

Warranty 

The annual warranty Cw is a fixed value as long as the warranty is in effect. The 
A 

total cost of the warranty per turbine is expressed as Cw and the warranty period is 

expressed as Cw. . The annual warranty cost is calculated using a straight-line method, as 
T 

shown below. 

(44) 

Inflation rate and debt finance period interest rate 

The inflation rate r is needed for the annual adjustment of the value for operation 

and maintenance and land payment. As the value of r increases, the overall costs also 
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increase. Another component of the total cost is the interest rate for the portion of the rurbine 

that is financed through debti D. As the value of in increases, so do the annual costs. 

Taxes and Incentives 

The components for taxes include the amount of turbine depreciation, federal taxes, 

state taxes, property taxes, and tax credits/incentives. 

Turbine depreciation 

The turbine depreciation period t z is the length of time in years that the turbine will 

depreciate. This length of time affects the amount of federal income tax that will be paid. If 

the amount of turbine depreciation Zr is greater than Cr, the eligible amount for federal 

income tax will be zero. In this model, the turbine depreciation Zr is calculated using a 

straight-line approach, where t z is the same value each year. As the number of years 

increase, t z, the value of Zr, decreases. The exact desired value of Zr would be dependant 

on the value of depreciation the entity could accommodate. If the value of accommodation 

was greater than the amount of turbine depreciation, then a period of depreciation should be 

able to decrease. 

(45) 

(46) 

a1 { 1 J - 2- = - ZR x l30 2 < 0 
azr l z 

(47) 
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Once the turbine depreciation Z r has been calculated, an estimate of federal truces 

can be calculated. If the excess depreciation TE is greater than Zr, then the entity has a 

positive balance for federal taxes. Otherwise, if TE is less than Zr, other entities might be 

pursued to increase the amount of eligible depreciation that can be used by this project. 

Another alternative would be to lengthen the period of turbine depreciation, which would 

also decrease the amount of excess depreciation for each year. When Zr =TE , net unused 

depreciation is zero. 

Taxable federal income 

Assuming that the entity is taxable, such as an investor owned utility or an REC with 

more than 15 percent of income from non-cooperative sources, the taxable federal corporate 

income tax rate structure is used to determine the federal tax liability. It is calculated as the 

difference between the net cash flow before truces, I 8 and the turbine depreciation, Zr. 

When Zr > I 8 , the federal tax liabi lity is zero. 

(48) 

This leads to the conclusion that when the turbine depreciation, t z ends, the federal 

tax liability increases. In some examples, the federal taxable income is zero due to the 

turbine depreciation being greater than Net cash flow before truces. 

Zr > I B 

Federal tax structure 

For lOUs, and trucable RECs, the complete federal corporate tax structure is below. 

From the structure below, the number of turbines is relevant due to the tax income stages. 
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Table 19. Federal Corporate Income Tax 

IRS PUB 542 
Taxable Income But not Tax Is Of the 
Over over Amount 

$0 $50,000 15% $0 
$50,000 $75,000 $7,500 25% $50,000 
$75,000 $100,000 $13,750 34% $75,000 

$100,000 $335,000 $22,250 39% $100,000 
$335,000 $10,000 ,000 $113 I 900 34% $335,000 

$10,000,000 $15,000,000 $3,400,000 35% $10,000,000 
$15 ,000 ,000 $18,333,333 $5,150,000 38% $15,000,000 
$18,333,333 35% 

State income tax 

For this model, a state income tax was incorporated. It can be calculated as a percent 

of the taxable income (cash flow before taxes), with Ts being a constant tax rate based on 
p 

the net cash flow, I 8 • 

(49) 

Alternatively, the state income tax can be a percent of the paid federal income tax, with Ts 
p 

being the constant tax rate based on the paid federal income tax . 

(50) 

Since not all states have a state income tax, the value can be set to zero percent 

Property tax 

The next component of taxes and incentives is a property tax. The property tax could 

be entered in three different methods (Harding 2004). The first, which was used for testing, 

is a constant valuation. Since the property tax was not adjusted for inflation, the property tax 

remained the same over the lifespan of the turbine. The equation for this method for 

calculating annual property tax is 
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T = (Cree x TP, J 
p 1000 

(51) 

with TP, being the property tax levy rate 

The second method calcu lates property taxes using an average abatement rate, with 

Tp being the property tax percent abated. 
~ 

T =(Crccx TP,](1-T) 
p 1000 P, 

(52) 

The final method is using a property tax based on the energy production, with Tsfl 

being the tax rate per kWh of energy generated. 

Tp = W xTw (53) 

Property taxes in thi s model are calculated using a levy rate TP, equal to $23 per 

$1,000 of the total turbine construction cost, Cree. Also included was an average annual 

abatement of Tp equal to 75 percent, to simulate Iowa's abatement. Since the property levy 
p 

rate did not change and the rate is not adjusted for inflation, property taxes will remain the 

same throughout the model. 

Production Tax Credit and Renewable Energy Production incentive 

Both the PTC and REPI, Tc have the same values and the total value of the tax 

benefit Tr is calculated using the same method, by multiplying the tax credit or incentive, by 

the total energy production Tr. 

(54) 
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State PTC/REPI 

Since the state of Iowa does not have a state credit/ incentive, the state tax 

credit/incentive T8 was assumed $0.000 cents per kWh. 

Unused PTC 

If the entered value of passive income, I P is greater than the total value of the 

production tax credits to be received, Tr , aJI the eligible tax credits are being allocated, or 

I u > 0. However, if IP is less than Tr , then a derived demand for finding other sources of 

passive income is generated to fully allocate the tax credits, or I u < 0. One financial goal of 

the entity should be to minimize the value of unused PTC and passive income, I u . By 

minimizing I u , the entity would be maximizing their eligible tax benefits. 

(55) 

Cumulative Total and Payback Period 

The income after taxes is the fo llowing equation: 

I A = I 8 +Tr - TF - Ts - Tp (56) 

It is equal to the cash flow before taxes plus the total tax credits or incentives minus the 

federal, state, and property taxes. As a result, each test case will have different values of after 

tax cash flow, I A . The cumulative net cash flow after taxes I c is calculated for the life span 

of the turbine. 

(57) 



www.manaraa.com

57 

The payback period occurs when the cumulative cash flow after taxes I c becomes 

greater than the equity investment by the primary investor. If there is a third party investor, 

the primary investor will have a shorter payback period because E1 has decreased with the 

third party investment, while the cumulative cash flow remains the same. 

t 8 = l c> E1 (58) 
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CHAPTER 4. RESULTS AND ANALYSES 

A set of statistical regressions was conducted to determine the potential energy 

output for a wind turbine. With the regressions collected from wind turbine data, financial 

statements and tax data were calculated. This theoretical model allows for the simple 

calculation of energy generation from wind turbines and the economic costs and benefits. In 

addition, unlike in previous studies, an extensive financial output was developed, using more 

parameter than previous studies. 

Base Case Models 1, 2, 3, and 4 

A set of four base case models with alternative business structures and incentive 

policy combinations were defined and simulated. 

Model l: This is an example of an entity that is required to pay federal and state taxes and is 

eligible to receive the Production Tax Credit (PTC). An example would be an investor 

owned utility (IOU) or a Rural Electric Cooperative (REC) that is taxable with more than 15 

percent of non-member revenues. 

Model 2: This is an example of an entity that is does not pay federal or state taxes and is 

eligible to receive the Renewable Energy Production Incentive (REPI). An example would 

be a Municipal Utility (MU) or a Rural Electric Cooperative (REC) utility or nonprofit. 

Model 3: This is an example of an entity that pays federal and state taxes and for which the 

PTC is not available. It is the same as Model 1 without a PTC. 

Model 4: This is an example of an entity that does not pay federal or state taxes, and for 

which the REPI is not available. It is the same as Model 2 without a REPI. 
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Model 3 and Model 4 currently exist because Federal legislation authorizing the PTC 

and REPI has expired and new energy legislation extending the authorization has not been 

passed by Congress. 

Scenarios A and B 

For each business structure - incentive policy combination (Models 1, 2, 3, and 4) 

two alternative turbine size scenarios, A and B were also simulated. Below is a table that 

differentiates the different models. Scenario A is the baseline model. Scenario B uses larger 

turbine data for increased turbine output, to provide a sensitivity analysis. 
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Table 20. Variable definitions for Scenarios A and B 

Term Variable 'A' 'B' 
Rotor Diameter Z Di 60 meters 80 meters 

Turbine Height ZH 60 meters 80 meters 

Turbine Rating ZR 1,000 kW 1,500 kW 

Annual Price Pi 5.5 cents/kW 5.5 cents/kW 

Initial Wind Class 3 4 
Medium Speed vm 7.18 mis 8.02 mis 

Interconnection and Transmission c, $50,000 $50,000 
Costs 
Planning, Legal, Engineering, and CA $50,000 $50,000 
Admin Mgt. Costs 
Construction Grants Cc $0 $0 

Total Construction Costs Cree $1.400,000 $2,050,000 

Equity percent EP 40 Percent of 40 Percent of 

Cree Cree 
3ro Party Initial Investment E3 0 Percent 0 Percent 

Debt Financing percent Co 60 Percent of 60 Percent of 
p 

Cree Cree 
Debt Financing Period CDr 20 Years 20 Years 

Debt Financing interest rate io 6 Percent 6 Percent 

Inflation rate r 3 Percent 3 Percent 
Warranty Cw $20,000 $20,000 

Warranty Period Cw, 2 Years 2 Years 
T 

O&M percent Cop 2.5 Percent 2.5 Percent 

Land Payment per year cl $3,000 per turbine $3,000 per turbine 

Useful life t; 25 Years 25 Years 

Turbine Depreciation Period l z 10 Years 10 Years 

Excess Depreciation TE $0 $0 
Passive Income Ip $0 $0 

State income tax based Federal Ts 10 Percent 10 Percent 
Income tax p 

Property Tax levy rate Tp, $23/$1,000 of $23/$1 ,000 of 

Cree Cree 
Federal Tax credit per kW Tc 1.8 cents per kWh 1 .8 cents per kWh 
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Model l 

Table 21. Model 1- cash flow for a taxable entity receiving PTC 

Model 1A1 Model 1B2 

YEAR Income Before Income After Income Before Income After 
Taxes Taxes Taxes Taxes 

1 $10 , 061 .3 6 $17 , 558 . 36 $192,196.9 6 $ 259,570 . 81 
2 $ 9 , 221. 36 $17 , 909.27 $ 190 , 981.96 $ 261 , 791. 52 
3 $18 , 356 .16 $27 , 270.71 $1 99 , 730.51 $273,298.32 
4 $ 17 , 465.00 $ 28 , 642.99 $198 ,441. 52 $275,866 . 96 
5 $ 16, 547 .11 $29,026 . 43 $197 I 113 • 85 $278 ,512.66 
6 $15 , 601 .68 $29,421. 39 $ 195 , 746 . 36 $ 28 1, 237 . 73 
7 $14 , 627.89 $29 , 828 .1 9 $ 194 , 337.84 $283,812.15 
8 $ 13 , 624. 89 $ 30 , 247.19 $1 92 , 887 . 07 $286 , 463 . 80 
9 $ 12 , 591 . 80 $ 30 , 678 . 77 $191 , 392 . 77 $289 ,195 . 00 

10 $11,527 . 71 $31,1 23 . 29 $ 189 , 853 . 65 $ 292 , 008 .14 
11 $10 , 431. 70 - $23,489.52 $ 188,268.35 $78 , 776 . 22 
12 $ 9 , 302.81 -$24,432.15 $186 , 635 .4 9 $77 , 843.86 
13 $ 8 ,14 0.05 -$25,403.05 $184 , 853.64 $ 76,883.53 
14 $6, 9 4 2 .4 1 -$26,403.08 $183 ,22 1.35 $ 75 , 894.39 
15 $ 5 , 708 .8 5 -$27,433.11 $181,437.08 $74,875.57 
16 $4,438 . 27 - $28,494 . 04 $ 179 , 599 . 28 $ 73 , 826 . 19 
17 $ 3 ,1 29 . 58 - $29,586 . 79 $177 ,7 06 . 35 $72 , 745 . 32 
18 $1 , 781.62 - $30,712.34 $175 , 756 . 63 $71 , 632.03 
19 $393 . 23 - $31,871.64 $173, 748 . 42 $70 , 485.35 
20 -$1 , 036 . 80 -$33,301.69 $ 171 , 679 . 97 $ 69 , 304 . 26 
21 $70,725 . 27 $24,575.82 $ 276 , 786 . 46 $ 129 , 320 . 07 
22 $ 69 , 208 .14 $ 23, 475.90 $ 274 , 592 . 04 $128 , 067 . 05 
23 $ 67 , 7 4 5 . 4 9 $22, 342.98 $ 272 , 331 . 78 $126 , 776 . 44 
24 $6 6 , 035 .96 $ 21,176 . 07 $270,003 . 71 $125 ,44 7.12 
25 $ 64 , 378 .1 5 $ 19,974 . 16 $ 267 , 605.80 $1 24 , 077 . 91 

$ 526, 949.69 $102, 124 .11 $5 , 106 , 908.84 $4 , 157 , 7 12. 4 0 

1 Model IA - Investor Owned Utility (IOU) with PTC, based on a 1000 kW turbine, 60 meter rotor diameter, 
and 60 meter height, and wind speed 7 .18 mis 
2 Model I B - IOU with PTC, based on a 1500 kW turbine, 80 meter rotor diameter, and 80 meter height, and 
wind speed 8.02 mis 
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Model 1A (1000 kW) Cash Flow 
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Figure 4. Model lA (1000 kW turbine)1 
- cash flow 
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Figure 5. Model lB (1500 kW turbine)2 - cash flow 
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1 Model 1 A - Investor Owned Utility (IOU) with PTC, based on a 1000 kW turbine, 60 meter rotor diameter, 
and 60 meter height, and wind speed 7.18 mis 
2 Model 1B - IOU with PTC, based on a 1500 kW turbine, 80 meter rotor diameter, and 80 meter height, and 
wind speed 8.02 mis 
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Table 22. Model 1- financial costs and returns per kWh 

Mode l 1A1 Model 1B2 

YEAR Cost3 Income Income Cost5 Income Income 
Before After Before After 
Taxes Taxes4 Taxes Taxes 6 

1 $0.0504 $0.0046 $0 . 0079 $ 0 . 0247 $0 . 03021 $0 . 04080 
2 $0 .0508 $0 .0042 $0.0081 $ 0.0249 $0.03002 $0.04115 
3 $0 . 0466 $ 0 . 0083 $0.0128 $0.0236 $0.03139 $0.04295 
4 $0.0470 $0 . 0079 $0 . 0129 $0.0238 $0 . 03119 $0 . 04336 
5 $0.0474 $0. 0075 $0.0131 $ 0.0240 $0.03098 $0 .04377 
6 $0.0479 $0.0071 $0 . 0133 $ 0.0242 $0 . 03077 $0 . 04420 
7 $0 .04 83 $0 . 0066 $0 . 0135 $0 . 0244 $0.03054 $0 . 04461 
B $ 0 . 0488 $0 . 0062 $0 .0137 $0 . 02 46 $0. 03032 $0 . 04502 
9 $ 0.0492 $0. 0057 $0 . 0139 $0.0249 $0 . 03008 $0.04545 

10 $0.0497 $0 . 0052 $0.0141 $ 0 . 0251 $0.02984 $0 . 0 4590 
11 $0 .0502 $0 . 0047 -$0 . 0106 $ 0 . 0254 $0 . 02959 $0 . 01238 
12 $0.0507 $ 0.0042 -$0. 0110 $0 . 0256 $0.02933 $0.01223 
13 $ 0 . 0513 $0. 0037 - $0. 0115 $0 . 0259 $0 . 02905 $0 . 01208 
14 $ 0.051 8 $0 .0031 -$0 . 0119 $0.0262 $0.02880 $0.01193 
15 $ 0 . 0524 $ 0.0026 - $0.0124 $0 . 0264 $0 . 02852 $ 0 . 01177 
16 $0 .0529 $0 . 0020 - $0.0129 $0.0267 $0 . 02823 $0.01160 
17 $0 . 0535 $0. 0014 - $0.0134 $0.0270 $0 . 02793 $0.01143 
18 $0 . 0541 $ 0 . 0008 - $0 . 0139 $0.0273 $0 . 02762 $0.01126 
19 $ 0.0548 $ 0 . 0002 -$0 . 0144 $ 0 . 0276 $0.02731 $0 . 01108 
20 $ 0 . 0554 - $0 .0005 -$0.0151 $0.0280 $0 . 02698 $ 0 . 01089 
21 $ 0 . 0229 $ 0 . 0321 $ 0 . 0111 $0 . 0114 $0 . 04350 $0.02033 
22 $0.0236 $ 0.0314 $ 0.0106 $0 . 0118 $0 . 04316 $0 . 02013 
23 $0 . 0243 $0.0307 $0 . 0101 $0.0121 $0 . 04280 $0 . 0 1993 
24 $ 0.0250 $0.0299 $ 0.0096 $0 . 0125 $0 . 04244 $0 . 01972 
25 $ 0 .0258 $ 0 . 0292 $ 0 . 0090 $ 0.0129 $ 0 . 04206 $0 . 01950 

1 Model IA - Investor Owned Utility (IOU) with PTC, based on a I 000 kW turbine, 60 meter rotor diameter, 
and 60 meter height, and wind speed 7 .18 mis 
2 Model 1 B - IOU with PTC, based on a 1500 kW turbine, 80 meter rotor diameter, and 80 meter height, and 
wind speed 8.02 mis 
3 Total costs for Model lA- construction, financial, and annual costs 
4 Income after taxes and PTC 
5 Total costs for Model lB- construction, financial, and annual costs 
6 Income after taxes and PTC 
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Model 1A (1000 kW Turbine) Financial Costs and Returns per kWh 
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Figure 6. Model lA (1000 kW turbine)' - financial costs and returns per kWh 

Model 16 (1500 kW Turbine) Financial Costs and Returns per kWh 
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Figure 7. Model lB (1500 kW turbine)2
- financial costs and returns per kWh 
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1 Model lA - Investor Owned Utility (IOU) with PTC, based on a 1000 kW turbine, 60 meter rotor diameter, 
and 60 meter height, and wind speed 7 .18 mis 
2 Model 1B - IOU with PTC, based on a 1500 kW turbine, 80 meter rotor diameter, and 80 meter height, and 
wind speed 8.02 mis 
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Model 1 is an example of an entity that is required to pay federal and state taxes and 

is eligible to receive the Production Tax Credit (PTC). An example of this model would be 

an investor owned utility or a Rural Electric Cooperative that is taxable with more than 15 

percent non-member revenues. In addition, it is assumed that the federal and state income tax 

is only being applied to the net cash flow from the wind energy revenue. 

The differences in lA and 1 B are in the assumptions regarding the wind turbine. 

Model lA uses a wind turbine with a 60-meter rotor diameter, placed at a height of 60 

meters, rated at 1,000 kW, and with an initial Wind Class of 3. Model lB uses a wind turbine 

with an 80-meter rotor diameter, placed at a height of 80 meters, rated at 1,500 kW, and 

placed at a site with an initial Wind Class of 4. All other financial variables remained the 

same. The reasoning for analyzing these two models is to show the effects of turbine size on 

taxes and tax credits. With negative cash flows, the income tax would be zero. Both IA and 

lB follow the same cash flow patterns. 

In year two, the warranty expires, which results in an increase in the net cash flow 

comparing year two to year three. In Model IA, the turbine depreciation was greater than the 

net cash flow with Zr >I 8 , resulting in the federal taxable income to be zero. However, in 

Model I B, Zr <I 8 , resulting in a positive federal taxable income. During the first 10 years, 

the entity is receiving a Production Tax Credit based on the energy generation from the wind 

turbine. Since the energy generation is greater in Model lB than Model IA, Model lB shows 

a higher level of tax credits. The Federal tax credit expires after 10 years (Office of Power 

Technologies 2004). From year 11 to year 20, the entity is still financing debt, but not 

receiving a tax credit. In Model IA, this results in a negative cash flow after the taxes, while 

Model IB has a decreased, yet positive cash flow. In addition, during this period, due to the 
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negative taxable federal income, the Federal income tax liability is zero. In year 20, for 

Model 1A, the costs exceed the revenue with Cr> R . In year 20, the debt-financing period 

has been completed, and as a result, both models have positive net cash flows . Due to the 

positive inflation, r > 0, cost is an upward sloping function. Since revenue R remains 

constant, due to both P; and W remaining the same, the cash flows before and after taxes are 

downward sloping. 

The cumulative cash flow is the summation of net cash flow after taxes t 8 > 25. For 

Model lA, the initial equity is never recovered. However, the payback period for Model lB 

occurs when t 8 = 4 . 
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Model 2 

Table 23. Model 2 - cash flow for a nonprofit entity not paying federal, state, or property 
taxes and receiving REPI 

MODEL 2A1 MODEL 2B2 

Year Income Before Income After Income Before Income After 
Incentives Incentives Incentives Incentives 

l $10 I 061. 36 $49,758.36 $192,196.96 $306 I 720 • 81 
2 $9,221.36 $50,109.27 $190,981.96 $308,941.52 
3 $18,356.16 $60,470 . 71 $199,730.51 $321,228.86 
4 $17,465.00 $60 , 842.99 $198,441.52 $323,584 . 81 
5 $16,547 . 11 $61,226.43 $197,113.85 $326 , 011.45 
6 $15 I 601. 68 $61,621 . 39 $195,746 . 36 $328,510.88 
7 $14 , 627.89 $62,028.19 $194,337.84 $331,085.30 
8 $13,624.89 $62,447.19 $192,887 . 07 $333,736 . 95 
9 $12,591.80 $62,878.77 $191,392 .77 $336,468.15 
10 $11, 52 7. 71 $63,323.29 $189,853 . 65 $339, 2 8 1.29 
11 $10,431.70 $10,431.70 $188,268 .3 5 $188,268 .35 
12 $9,302.81 $9,302.81 $186,635.49 $186,635.49 
13 $8,140 . 05 $8,140.05 $184,853 . 64 $184,953.64 
14 $6,942.41 $6,942.41 $183,221.35 $183,221.35 
15 $5,708 . 85 $5 , 708.85 $181,437.08 $181,437 . 08 
16 $4,438.27 $4,438.27 $179,599.28 $179,599.28 
17 $3,129.58 $3,129.58 $177,706.35 $177,706.35 
18 $1, 781. 62 $1,781.62 $175,756 . 63 $175,756 . 63 
19 $393.23 $393.23 $173 , 748 . 42 $173,748.42 
20 - $1,036.80 - $1,036.80 $171,679.97 $171,679 . 97 
21 $70,725.27 $70,725 .27 $276,786.46 $276,786.46 
22 $69,208 . 14 $69,208.14 $274 , 592.04 $274,592.04 
23 $67,745 . 49 $67,645 . 49 $272 I 331. 78 $272,331.78 
24 $66 , 035 . 96 $66,035.96 $270,003.71 $270,003 . 71 
25 $64,378 . 15 $ 4,3 7 8 .15 $267,605 . 80 $267,605.80 

$526,949 . 69 $981,931.32 $5 , 106,908.84 $6,419,896 . 37 

1 Model 2A - Municipal Utility (MU) with REPI, based on a l 000 kW turbine, 60 meter rotor diameter, and 60 
meter height, and wind speed 7.18 mis 
2 Model 2B - MU with REPI, based on a 1500 kW turbine, 80 meter rotor diameter, and 80 meter height, and 
wind speed 8.02 mis 
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Model 2A (1000 kW Turbine) Cash Flow 
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Figure 8. Model 2A (1000 kW turbine)' - cash flow 

$375,000 

$350,000 

$325,000 

$300,000 

$275.000 

$250.000 

~ 
$225,000 

It $200,000 

~ $175,000 

I $150.000 

$125,000 

$100,000 

$75,000 

$50.000 

$25,000 

S-

Model 28 (1 500 kW Turbine) Cash Flow 

-~ ---·-~- ~j 
-- ---- j 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

v ... 

Figure 9. Model 2B ( 1500 kW turbine )2 
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1 Model 2A - Municipal Utility (MU) with REP!, based on a 1000 kW turbine, 60 meter rotor diameter, and 60 
meter height, and wind speed 7 .18 mis 
2 Model 2B - MU with REPI, based on a 1500 kW turbine, 80 meter rotor diameter, and 80 meter height, and 
wind speed 8 .02 mis 
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Table 24. Model 2 - financial costs and returns per kWh 

MODEL 2A1 MODEL 282 

Year Cost3 Income Income Cost5 Income Income 
Before After Before After 

Incentives Incentives4 Incentives Incentives6 

1 $0.0504 $0.0046 $0.0225 $0.0247 $0 . 03021 $0.04820 
2 $0.0508 $0.0042 $0.0227 $0.0249 $0.03002 $0.04850 
3 $0.0466 $0.0083 $0.0274 $0 .0236 $0.03139 $0.0504 0 
4 $0.0470 $0.0079 $0 . 0275 $0.0238 $0.03119 $0.05080 
5 $0.0474 $0.0075 $0.0277 $0.0240 $0.03098 $0.05120 
6 $0.0479 $0. 0071 $0.0279 $0.0242 $0.03077 $0.05160 
7 $0.0483 $0.0066 $0.0281 $0.0244 $0.03054 $0 . 05200 
8 $0 . 0488 $0.0062 $0.0283 $0.0246 $0.03032 $0.05240 
9 $0.0492 $0.0057 $0.0285 $0.0249 $0.03008 $0.05280 

10 $0.0497 $0.0052 $0.0287 $0.0251 $0.02984 $0.05330 
11 $0.0502 $0.0047 $0.0047 $0.0254 $0.02959 $0.02959 
12 $0.0507 $0.0042 $0.0042 $0.0256 $0.02933 $0.02933 
13 $0 .0513 $0.0037 $0.0037 $0.02 59 $0.02905 $0.02905 
14 $0.0518 $0.0031 $0. 0031 $0.0262 $0.02880 $0.02880 
15 $0.0524 $0.0026 $0.0026 $0.0264 $0.02852 $0.02852 
16 $0.0529 $0.0020 $0.0020 $0.0267 $0.02823 $0.02823 
17 $0.0535 $0. 0014 $0. 0014 $0.0270 $0.02793 $0.02793 
18 $0 . 0541 $0.0008 $0.0008 $0.0273 $0 . 02762 $0.02762 
19 $0.0548 $0.0002 $0 . 0002 $0.0276 $0.02731 $0.02731 
20 $0.0554 -$0.0005 - $0.0005 $0.0280 $0.02698 $0.02698 
21 $0.0229 $0.0321 $0.0321 $0. 0114 $0 . 04350 $0.04350 
22 $0.0236 $0.0314 $0.0314 $0. 0118 $0.04316 $0.04316 
23 $0.0243 $0.0307 $0.0307 $0.0121 $0.04280 $0.04280 
24 $0.0250 $0.0299 $0.0299 $0.0125 $0.04244 $0.04244 
25 $0.0258 $0.0292 $0. 0292 $0.0129 $0.04206 $0.04206 

1 Model 2A - Municipal Utility (MU) with REPI, based on a 1000 kW turbine, 60 meter rotor diameter, and 60 
meter height, and wind speed 7 .18 mis 
2 Model 2B - MU with REPI, based on a 1500 kW turbine, 80 meter rotor diameter, and 80 meter height, and 
wind speed 8.02 mis 
3 Total costs for Model 2A- construction, financial, and annual costs 
4 Income after REPI 
5 Total costs for Model 2B- construction, financial, and annual costs 
6 Income after REPI 
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Model 2A (1000 kW Turbine) Financial Costs and Returns per kWh 
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Figure 10. Model 2A (1000 kW turbine)' - financial costs and returns per kWh 
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Model 2B (1500 kW turbine)2 - financial costs and returns per kWh 
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1 Model 2A - Municipal Utility (MU) with REPI, based on a I 000 kW turbine, 60 meter rotor diameter, and 60 
meter height, and wind speed 7 .18 mis 
2 Model 2B - MU with REPI, based on a 1500 kW turbine, 80 meter rotor diameter, and 80 meter height, and 
wind speed 8.02 mis 
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Model 2 is an example of an entity that is does not pay federal or state taxes and is 

eligible to receive the Renewable Energy Production Incentive (REP!). An example of this 

model would be a Municipal Utility (MU) or some other nonprofit entity that is not taxable, 

such as a Rural Electric Cooperative with less than 15 percent non-member income. In this 

model the entity does not pay federal, state income taxes, or property taxes. In the case of a 

municipal government, it is eligible for a Renewable Energy Production Incentive (REPD 

(Office of Power Technologies 2004). 

The differences in 2A and 2B are in the assumptions of the wind turbine. Model 2A 

uses a wind turbine with a 60-meter rotor diameter, placed at a height of 60 meters, rated at 

l ,000 kW, and with an initial Wind Class of3. Model 2B uses a wind turbine with an 80-

meter rotor diameter, placed at a height of 80 meters, rated at 1,500 kW, and placed at a site 

with an initial Wind Class of 4. All other financial variables remained the same. 

In year two, the warranty expired, which resulted in an increase in the net cash flow 

from year two to year three. The next plateau is from year 10 and year 11, with the expiration 

of the REPI (Office of Power Technologies 2004). In Model 2A, the turbine depreciation 

remains unused as a nonprofit entity, but it would have been greater than the net cash flow, 

with Zr> I 8 . However, in Model 2B, Zr< I 8 . Since the energy generation is greater in 

Model 2B than Model 2A, 2B has increased REPL From year 11 to year 20, the entity is still 

financing debt, but not receiving the REPI. In Model 2A, this results in a negative cash flow, 

while Model 2B has a decreased, yet positive cash flow. In year 20, for Model 2A, the costs 

exceed the revenue with Cr > R . After year 20, the debt-financing period has been 

completed, and as a result, both models have positive net cash flows. 
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In addition, in Model 2A the equity is never recovered, where the cumulative cash 

flow is the summation of net cash flow after taxes . Due to the positive inflation, r > 0, cost 

is an upward sloping function , shown in Figures 10 and 11 . Since revenue R remains 

constant, due to both P; and W remaining the same. As a result, the payback period is 

greater than 25 years, which is longer than the expected life span of the wind turbine with 

t8 > 25. However, the payback period for the larger wind turbine at a site with a higher 

average wind speed, the payback period is year four, even with the higher initial turbine 

costs, due to the increased REPI received, with t 8 = 4 . 
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Model 3 

Table 25. Model 3 - cash flow for a taxable entity that does not receiving a PTC 

MODEL 3A1 MODEL 3B2 

YEAR I ncome Befor e Income After Income Before Inc ome After 
Taxes Taxes Taxes Taxes 

1 $10 I 061. 36 - $22,138.63 $192 , 196 . 96 $145,046. 96 
2 $ 9 , 221. 36 - $22,978.63 $190 , 981 . 96 $ 1 4 3 , 831 . 96 
3 $ 18 , 356 . 16 - $13,843.83 $1 99 , 730 . 51 $151 , 799 . 98 
4 $ 17 , 465 . 00 - $14,734 . 99 $ 198 , 44 1 . 52 $ 150 , 723.67 
5 $16 , 5 4 7 . 11 -$15,652.88 $197 , 113.85 $ 1 4 9 , 615 . 07 
6 $15,60 1 . 68 - $16,498.31 $195 , 7 46.36 $ 1 4 8 , 473 . 21 
7 $14, 627 . 89 - $17 , 572.10 $194 , 337.8 4 $ 147 , 064. 69 
8 $ 13 , 624 . 89 -$18,575.10 $1 92 , 887 . 07 $1 45 , 613 . 92 
9 $12 , 591 . 80 - $19,608 . 19 $ 191 , 392 . 77 $ 14 4 , 119 . 62 

10 $ 11, 527 . 71 - $20,672.28 $189, 853 . 65 $ 1 42 , 580 . 50 
11 $1 0 , 43 1. 70 - $23 , 489 . 53 $188,268 . 35 $ 78,776 . 22 
12 $ 9 , 302.81 - $24,432 . 15 $186,635 . 49 $ 77 , 843 . 86 
13 $8 , 140 . 05 - $25,403. 05 $ 184 , 853 . 64 $ 76 , 883 . 53 
14 $ 6 , 942 .41 - $26,403 . 08 $183, 2 21 .35 $ 75 , 894 . 39 
15 $ 5 , 708 .8 5 - $27 , 43 3 .11 $ 181 , 437 . 08 $ 74 , 875.57 
16 $4,4 38 . 27 - $28,484.04 $ 179, 599 . 28 $ 73 , 826 . 19 
17 $ 3 , 129 . 58 -$29 , 586.79 $177,706 . 35 $ 72 , 7 4 5 . 32 
18 $1 , 78 1. 62 - $30, 7 12. 34 $ 175 , 756. 63 $71, 632 . 03 
19 $ 393 . 23 - $31 , 871.64 $ 173 , 7 48 . 42 $ 70 , 485 . 35 
20 - $1,036.80 - $33 , 301.69 $ 17 1 ,679 . 97 $ 69 , 304 . 26 
21 $ 70 , 725 . 27 $ 24 , 575 . 82 $ 276 , 786 .4 6 $129 , 320 . 07 
22 $69 , 208.14 $ 23 , 475 . 90 $ 27 4 , 592 . 0 4 $ 128 , 067.05 
23 $67,745.4 9 $ 22 , 3 42 . 98 $ 272 , 331 . 78 $ 126 , 776 .4 4 
24 $ 66 , 035 . 96 $2 1, 176 . 07 $ 270 , 003.7 1 $ 125 , 4 47 . 12 
25 $ 6 4, 378 . 15 $1 9 , 97 4 .16 $267,605.80 $ 124 , 077 . 91 

$526 , 949.69 - $351, 847. 43 $5,106,908 . 84 $ 2 , 844 , 824 . 89 

1 Model 3A - lnvestor Owned Utility (IOU) based on a 1000 kW turbine, 60 meter rotor diameter, and 60 meter 
height, and wind speed 7 .18 mis, without PTC 
2 Model 3B - IOU based on a 1500 kW turbine, 80 meter rotor diameter, and 80 meter height, and wind speed 
8.02 mis, without PTC 
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MODEL 3A (1500 kW Turbine) Cash Flow 
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Figure 16. Model 3A (1000 kW turbine)1 
- cash flow 
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MODEL 38 (1000 kW Turbine) Cash Flow 
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Figure 17. Model 3B (1 500 kW turbine)2 - cash flow 

1 Model 3A - lnvestor Owned Utility (IOU) based on a 1000 kW turbine, 60 meter rotor diameter, and 60 meter 
height, and wind speed 7 .18 mis, without PTC 
2 Model 3B - IOU based on a 1500 kW turbine, 80 meter rotor diameter, and 80 meter height, and wind speed 
8.02 mis, without PTC 
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Table 26. Model 3 - financial costs and returns per kWh 

MODEL 3A1 MODEL 3B2 

Year Cost) Income Income Cost5 Income Income 
Before After Before After 
Taxes Taxes4 Taxes Taxes6 

1 $0 . 0504 $0.0046 -$0.0100 $0.0247 $0.03021 $0.02280 
2 $0.0508 $0.0042 -$0.0104 $0.0249 $0.03002 $0.02261 
3 $0.0466 $0.0083 -$0.0062 $0.0236 $0.03139 $0 .023 86 
4 $0.0470 $0.0079 -$0.0066 $0 . 0238 $0.03119 $0.02369 
5 $0.0474 $0 . 0075 -$0.0070 $0.0240 $0 . 03098 $0.02352 
6 $0 . 0479 $0.0071 - $0.0075 $0 . 0242 $0.03077 $0.02334 
7 $0.0483 $0.0066 - $0.0079 $0 . 0244 $0.03054 $0 . 02311 
8 $0.0488 $0.0062 -$0.00 84 $0.0246 $0.03032 $0.02289 
9 $0.0492 $0 .0057 -$0.0088 $0.0249 $0.03008 $0.02265 

10 $0.0497 $0 . 0052 -$0.0093 $0 .02 51 $0.02984 $0.02241 
11 $0.0502 $0 .0047 -$0.0106 $0 . 0254 $0.02959 $0.01238 
12 $0.0507 $0 . 0042 - $0.0110 $0.0256 $0.02933 $0.01223 
13 $0.0513 $0.0037 -$0. 0115 $0.0259 $0.02905 $0.01208 
14 $0.0518 $0.0031 - $0. 0119 $0 .0262 $0 .02880 $0.01193 
15 $0.0524 $0.0026 - $0.0124 $0 .0264 $0.02852 $0 . 01177 
16 $0.0529 $0.0020 -$0.0129 $0.0267 $0.02823 $0 . 01160 
17 $0.0535 $0 . 0014 -$0.0134 $0.0270 $0.02793 $0.01143 
18 $0.0541 $0.0008 -$0.0139 $0.0273 $0. 02762 $0. 01126 
19 $0.0548 $0.0002 -$0.0144 $0.0276 $0.02731 $0. 01108 
20 $0.0554 -$0.0005 - $0.0151 $0.0280 $0.02698 $0.01089 
21 $0.0229 $0.0321 $0. 0111 $0. 0114 $0.04350 $0.02033 
22 $0 .0236 $0 .03 14 $0.0106 $0. 0118 $0 . 04316 $0.02013 
23 $0.0243 $0.0307 $0.0101 $0.0121 $0.04280 $0.01993 
24 $0 . 0250 $0.0299 $0.0096 $0.0125 $0.04244 $0. 01972 
25 $0.0258 $0 . 0292 $0 .0090 $0.0129 $0 . 04206 $0 . 01950 

1 Model 3A - Investor Owned Utility (IOU) based on a 1000 kW turbine, 60 meter rotor diameter, and 60 meter 
height, and wind speed 7 .18 mis 
2 Model 3B - IOU based on a 1500 kW turbine, 80 meter rotor diameter, and 80 meter height, and wind speed 
8.02 mis 
3 Total costs for Model 3A- construction, financial, and annual costs 
4 Income after taxes 
5 Total costs for Model 3B- construction, financial, and annual costs 
6 Income after taxes 
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---_ ----1 Model 3A (1000 kW Turbine) Financial Costs and Returns per kWh 
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Figure 19. Model 3 B ( 15 00 kW turbine )2 
- financial costs and returns per kWh 

1 Model 3A - lnvestor Owned Utility (IOU) based on a 1000 kW turbine, 60 meter rotor diameter, and 60 meter 
height, and wind speed 7. 18 mis 
2 Model 38 - IOU based on a 1500 kW turbine, 80 meter rotor diameter, and 80 meter height, and wind speed 
8.02 mis 
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Model 3 is an example of an entity that pays federal or state taxes and for which there 

is no Production Tax Credit (PTC) available. An example of this model would be a taxable 

entity, such as an Investor Owned Utility (IOU) or a Rural Electric Cooperative (REC). This 

model is to show the economic impact of the loss of tax credits/incentives for wind energy. 

The differences in Model 3A and Model 3B are in the assumptions in the wind 

turbine. Model 3A uses a wind turbine with a 60-meter rotor diameter, placed at a height of 

60 meters, rated at 1,000 kW, and with an initial Wind Class of 3. Model 3B uses a wind 

turbine with an 80-meter rotor diameter, placed at a height of 80 meters, rated at 1,500 kW, 

and placed at a site with an initial Wind Class of 4. All other financial variables remained the 

same. Model 3B was created for comparison purposes to other models. Due to the change in 

turbine and turbine location, there will be increased energy production. 

In year two, the warranty is no longer in effect, which results in an increase in the net 

cash flow from year two to year three. The next plateau is from year I 0 and year 11. In 

Model 3A, the turbine depreciation remains greater than the net cash flow with Zr > I 8 , 

resulting in a federal taxable income of zero. However, in 3B. From year 11 to year 20, the 

entity is still financing debt. In Model 3A, this results in a negative cash flow after the taxes, 

while Model 3B has a decreased, yet positive cash flow . In addition, during this period, due 

to the negative taxable federal income, the federal income tax liability is zero. Only in year 

20, for Model 3A, do the costs exceed the revenue with Cr > R. Due to the positive inflation 

rate, the net losses continue increasing. After year 20, the debt-financing period has been 

completed, and as a result, both models begin to experience positive net cash flows. Only 

after the debt-financing period has been completed does Model 3A have a positive net cash 

flow after taxes. Due to the positive inflation, r > 0 , cost is an upward sloping function. 
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Since revenue R remains constant, due to both P; and W remaining the same, the cash 

flows before and after taxes slope downward 

In addition, in Model 3A the initial debt payment is never fully recovered. The 

payback period is greater than 25 years, which is longer than the assumed expected life span 

of the wind turbine with t8 > 25 . However, the payback period for Model 3B, the payback 

period is when t 8 = 6 . 
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Model 4 

Table 27. Model 4 - cash flow for a nonprofit entity not paying federal, state, or property 
taxes and not receiving REPI 

MODEL 4A1 MODEL 4B2 

YEAR I ncome Before Income After Income Befor e I ncome After 
Taxes Taxes Taxes Taxes 

1 $ 10 , 061. 36 $ 10 , 061. 36 $192 , 196 . 96 $1 9 2 , 1 9 6. 96 
2 $ 9 , 221. 3 6 $ 9 , 221.36 $ 190 , 981. 96 $ 190 , 98 1. 96 
3 $1 8 , 356 .1 6 $ 18 , 356 . 16 $1 99 , 730.51 $ 199, 730 . 51 
4 $17,465 . 00 $17 , 465 . 00 $1 98 ,44 1 . 52 $198 ,4 41.52 
5 $16, 5 4 7 .11 $1 6 , 547 .11 $197, 113 . 85 $ 197 / 113 • 85 
6 $ 15 , 601 .68 $1 5 , 601.68 $1 95 , 746 . 3 6 $1 95 , 746 . 36 
7 $14,627.89 $14,627.89 $194, 337 . 84 $194, 337 .84 
8 $13,62 4.89 $13, 624. 89 $1 92 , 887.07 $1 92 , 887 . 07 
9 $1 2 , 591. BO $1 2 ,5 91. 80 $191 , 392 . 77 $ 1 91, 3 92 . 77 

10 $11,527 .7 1 $11, 527 . 71 $189 , 853 . 65 $189 , 853 . 65 
11 $1 0 ,4 31 . 70 $ 10,431. 70 $188 , 268 . 35 $1 88 , 268 . 35 
12 $ 9 , 302 . Bl $ 9 , 302. 8 1 $186 , 635.49 $1 86, 635 .4 9 
13 $8 , 1 4 0 . 05 $ 8 , 1 4 0 . 05 $184 , 853.64 $1 8 4, 853 . 64 
14 $ 6 , 9 42 . 41 $ 6 , 9 42. 4 1 $1 83 , 22 1. 35 $183 , 22 1. 35 
15 $ 5 , 708 .85 $5, 708. 85 $1 81 , 437.0B $1 81 ,437 . 08 
16 $4,438 .27 $4,4 38 . 27 $179, 599.28 $179,599. 28 
17 $ 3 , 1 2 9 .58 $ 3 , 129 . 58 $ 177 , 706.35 $ 177 ,70 6. 35 
18 $1, 7 81 . 6 2 $1, 781. 62 $17 5 , 756 . 63 $ 175 , 756 . 63 
19 $ 393 .2 3 $ 393 . 23 $173 , 7 48 .4 2 $ 173 , 7 48 . 42 
20 -$1,036.80 - $1,036.80 $171 , 679 . 97 $ 171 , 679 . 97 
21 $70, 725 . 27 $70 , 725 . 27 $2 76 , 786 . 46 $ 27 6, 786 .4 6 
22 $69 , 208.14 $69 ,2 08. 1 4 $27 4,592.04 $ 27 4, 592 . 04 
23 $ 67 , 7 4 5 . 4 9 $67,7 45 .4 9 $272 , 331 . 78 $ 27 2, 331 . 78 
24 $66, 035.96 $66, 035. 9 6 $ 270 , 003 . 71 $ 270 , 003 . 71 
25 $64,378 . 1 5 $64, 378 .1 5 $267 , 605 .8 0 $ 2 6 7 ,605.80 

$52 6,94 9 .69 $ 52 6 , 9 49 . 69 $5,106 ,908 . 84 $ 5 , 106, 908 . 8 4 

Even though this entity does not pay taxes or receive tax benefits, the income before 

and after were calculated to compare with other models. As a result, the income is the same 

before and after taxes. 

1 Model 4A - Municipal Utility (MU) based on a 1000 kW turbine, 60 meter rotor diameter, and 60 meter 
height, and wind speed 7 .18 mis 
2 Model 4B - MU based on a 1500 kW turbine, 80 meter rotor diameter, and 80 meter height, and wind speed 
8.02 mis 
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Figure 12. Model 4A (1000 kW turbine)' - cash flow 
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Figure 13. Model 4B (1500 kW Turbine)2 
- cash flow 

r----
--income 

l 
Before 
Taxes 

--income 
After 
Taxes 

I 
I 

J 

1 Model 4A - Municipal Utility (MU) based on a I 000 kW turbine, 60 meter rotor diameter, and 60 meter 
height, and wind speed 7 .18 mis 
2 Model 4B - MU based on a 1500 kW turbine, 80 meter rotor diameter, and 80 meter height, and wind speed 
8.02 mis 
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Table 28. Model 4 - financial costs and returns per kWh 

MODEL 4A1 MODEL 4B2 

YEAR Cost3 Income Income Cost5 Income Income 
Before After Before After 
Taxes Taxes4 Taxes Taxes6 

1 $0 . 0504 $ 0.0046 $0 . 0046 $ 0 . 0247 $0 . 03021 $0 . 03021 
2 $0 . 0508 $0.0042 $0 . 0042 $ 0 . 0249 $ 0 . 03002 $0 . 03002 
3 $ 0 . 0 466 $0.0083 $0 . 0083 $ 0 . 0236 $ 0 . 03139 $ 0 . 03139 
4 $ 0 . 0470 $ 0 .007 9 $0.0079 $0.0238 $ 0 . 03119 $0 . 03119 
5 $0.0474 $ 0.0075 $0 . 0075 $0 . 0240 $ 0.03098 $0 . 03098 
6 $0. 0479 $ 0 .0071 $0 . 0071 $0.0242 $ 0 . 03077 $0.03077 
7 $0 . 0 48 3 $0.0066 $0 .0066 $ 0 . 02 44 $0.0305 4 $ 0 . 03054 
8 $0 . 0 488 $ 0 . 0062 $0.0062 $0.0246 $ 0 . 03032 $ 0 . 03032 
9 $0 . 0492 $ 0 . 0057 $0 . 0057 $ 0 . 0249 $ 0 . 03008 $ 0 . 03008 

10 $ 0 . 0497 $ 0.0052 $0.0052 $0.0251 $ 0 . 0298 4 $ 0 . 0298 4 
11 $0.0502 $ 0.0047 $0 . 0047 $ 0 . 0254 $ 0 . 02959 $ 0 . 02959 
12 $0.0507 $0.0042 $0.0042 $0.0256 $ 0.02933 $ 0 . 02933 
13 $0.0513 $0 . 0037 $ 0 . 0037 $0 . 0259 $ 0 . 02905 $ 0 . 02905 
14 $0 . 0518 $0.0031 $0.0031 $0 . 0262 $ 0 . 02880 $ 0 . 02880 
15 $0.0524 $0.0026 $0.0026 $0.02 64 $0 . 02852 $0 .02852 
16 $0. 0529 $ 0 . 0020 $0. 0020 $0.0267 $0 . 02823 $0 . 02823 
17 $ 0 . 0535 $0 . 0014 $0. 0014 $0.0270 $ 0 . 02793 $ 0 . 02793 
18 $0.0541 $0 . 0008 $0.0008 $ 0 . 0273 $ 0 . 02762 $0 . 02762 
19 $0.0548 $0 . 0002 $ 0 . 0002 $0.0276 $ 0 . 02731 $0. 02731 
20 $0.0554 -$0 . 0005 - $0.0005 $0 . 0280 $ 0 . 02698 $ 0 . 02698 
21 $0 . 0229 $0 . 032 1 $0 . 032 1 $0 . 0114 $0. 0 4 350 $0.04350 
22 $0 . 0236 $0.031 4 $0.0314 $0 . 0118 $0 . 0 4316 $ 0 . 04316 
23 $0 .0243 $0. 0307 $0 . 0307 $0 . 0121 $0 . 04280 $0 . 0 4280 
24 $0. 0250 $0.0299 $0.0299 $0.0125 $0 . 0 4244 $0 . 04244 
25 $0.0258 $0 . 0292 $ 0 . 0292 $0 . 0129 $0 . 04206 $0.04206 

1 Model 4A - Investor Owned Utility (IOU) based on a 1000 kW turbine, 60 meter rotor diameter, and 60 meter 
height, and wind speed 7 .18 mis 
2 Model 4B - IOU based on a 1500 kW turbine, 80 meter rotor diameter, and 80 meter height, and wind speed 
8.02 mis 
3 Total costs for Model 4A- construction, financial, and annual costs 
4 Income after taxes 
s Total costs for Model 4B- construction, financial, and annual costs 
6 Income after taxes 
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Figure 14. Model 4A (1000 kWh turbine)' - financial costs and returns per kWh 
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Figure 15. Model 4B (1500 kWh turbine)2
- financ ial costs and returns per kWh 
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1 Model 4A - Investor Owned Utility (lOU) based on a 1000 kW turbine, 60 metes rotor diameter, and 60 
meter height, and wind speed 7 .18 mis 
2 Model 4B - IOU based on a 1500 kW turbine, 80 meter rotor diameter, and 80 meter height, and wind speed 
8.02 mis 
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Model 4 is an example of an entity that is does not pay federal or state taxes and is 

not eligible lo receive either a PTC or REPI. An example of this model would be a municipal 

government or some other type of public entity that is not taxable and yet is not eligible for 

tax credits. As a result, in this model the entity does not pay federal, state, or property taxes. 

Even though the entity may be listed as a non-profit entity, financially, the entity may not be 

able to accommodate the tax incentives due to regulations. 

The differences in 4A and 4B are in the assumptions of the wind turbine. Model 4A 

uses a wind turbine with a 60-meter rotor diameter, placed at a height of 60 meters, rated at 

1,000 kW, and with an initial Wind Class of 3. Model 4B uses a wind turbine with an 80-

meter rotor diameter, placed at a height of 80 meters, rated at 1,500 kW, and placed at a site 

with an initial Wind Class of 4. All other financial variables remained the same. Even though 

Model 4 is not directly affected by federal and state tax rates, Model 4A has negative federal 

taxable income, and 4B was created for comparison purposes with other tax structures as 

with the other models. 

Model 4 is a base model when no taxes are paid and tax benefits received. As a 

result, in year two, the warranty no longer is in effect, which results in an increase in the net 

cash flow from year 2 to year 3. From year 11 to year 20, the entity is still servicing debt. 

After year 20, the debt-financing period has been completed. Since R remains constant, due 

to both P; and W remaining the same, the cash flows before and after taxes are downward 

sloping, as shown in Figures 12 and 13. Due to the positive inflation, r > 0 , cost is an upward 

sloping function, shown in Figures 14 and 15. 
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In addition, in Model 4A the initial debt payment is never fully recovered with 

r 8 > 25 , which is longer than the assumed lifespan of the turbine. However, the payback 

period for the larger wind turbine at a site with a higher average wind speed, the payback 

period is when t 8 = 6. 
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Comparison 

Table 29. 'A' Scenarios - cash flow 

Year Income Before Model lA - Income Model 2A - Income Model 3A - Income Model 4A -
Taxes After Taxes and PTC1 Af ter Incentivea2 

l $10,061.36 $17,558.36 $49 , 758 .3 6 
2 $9 , 221.36 $17 ,909 . 2 7 $ 50, 109 . 27 
3 $8 356 . 16 $27 270. 7l $60 470 .71 
4 $17 , 46 5.00 $28 , 642.99 $60,842 . 99 
5 $16 , 547 . ll $29 , 026 . 43 $61,226.43 
6 $15,601 . 68 $29 , 421.39 $61,621 . 39 
7 $14,627 . 89 $29 , 828.19 $62 , 028.19 
8 $13,624.89 $30 ,247 . 19 $62 , 44 7. 19 
9 $12,591 . 80 $30 ,678 . 77 $62,878 .77 

10 Sll ,527.71 $31,123 . 29 $63 , 323 . 29 
11 $10,431 . 70 - $23 489 . 53 $10 431. 70 
12 $9,302 . 81 -$24,432 . 15 $9 , 302 . 81 
13 $8 , 140 . 05 - $25,403. 05 $8 ,14 0.05 
14 $6,94 2 . 41 - $26,403 . 08 $6 , 942 . 41 
15 $5,708 . 85 - $27, 433.ll $5 , 708 . 85 
16 $ 4 , 438 . 27 -$28, 484 . 04 $4 , 438 . 27 
17 $3 ,129 . 58 - $29 ,586 . 79 $3 , 129 . 58 
18 $1,781.62 -$30 , 712 .34 $1 ,781 .6 2 
19 $393.23 -$31,871 . 64 $393.23 
20 - $1 , 036 . 80 - $33,301 . 69 - $1,036.80 
21 $70,725.2 7 $24 575 . 82 $70 725.27 
22 $69,208.14 $23 , 475.90 $69 , 208 . 14 
23 $67 ,645 . 49 $22,342 . 98 $67,645.49 
24 $66,035 . 96 $21 , 176 . 07 $66,035 . 96 
25 $64,378.15 $19 , 97 4 .16 $64, 378.15 

$526 , 849 .6 9 $102 , 124 .ll $981 , 931 .3 2 
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Figure 20. Comparison of cash flow for 1000 kW turbine 

After Taxes3 Income • 

~ 
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- $15,652 . 88 $16 , 547.ll 
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- $20,672 . 28 $11 ,527.71 
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- $31 , 871 . 6 4 $393.23 
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$24,575 . 82 $70 725. 2 7 
$23, 4 75 . 90 $69,208 . 14 
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4 -3AJ 
----- Mod•I 4A 

' Investor Owned Utility (IOU) with PTC, based on a 1000 kW turbine, 60 meter rotor dtamctcr, 60 meter height, and wind speed of7.18 
mis 
1 Municipal Utthty (MU) with REPI, based on a 1000 kW turbine, 60 meter rotor diamct.er, 60 meter height, and wmd speed of7.18 mis 
3 IOU without PTC, based on a I 000 kW turbine, 60 meter rotor drnmcter, 60 meter height., and wind speed of 7 . 18 mis 
' MU without REP!, based on a I 000 kW turbine, 60 meter rotor diameter, 60 meter height, and wind speed of 7 .18 mis 
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Table 30. 'B' Scenarios - cash flow 

Year Income Before Model lB - Income Model 2B - Income Model 3B - Model 48 -
Taxes After Taxes and After Incentives2 Income After Income' 

PTC1 Taxes1 

l $192, 196 . 96 $259,570 . 81 $306. 720 . 81 $145,046 . 96 $192,196 . 96 
2 $190 , 981 . 96 $261,791.52 $308,941 . 52 $43,831.96 $190,981 . 96 
3 $199,730 . 51 $273,298 . 32 $321,228 . 86 $151, 799 . 98 $199,730 . 51 
4 $198 , 4 41.52 $275 , 866 . 96 $323,584 . 81 $150,723 . 67 $198. 441 . 52 
5 $197,113 .85 $278,512 . 66 $326,011 . 45 $149, 615.07 $197,113.85 
6 $195 , 746.36 $281,237.73 $328 ,510 .88 $148,473 . 21 $195,746.36 
7 $194 , 337 . 84 $283 , 812.l.5 $331,085 . 30 $14 7. 064 . 69 $194,337.84 
8 $192,887 .07 $286 , 46 3.80 $333,736.95 $145,613.92 $192,887 . 07 
9 $191,392 .77 $289 , 195 . 00 $336 , 468 .15 $144. 119 . 62 $191,392 . 77 

10 $189,853.65 $ 292, 008 . 14 $339 , 281.29 $142,580.50 $189,853 . 65 
11 $188,268.35 $78 , 776.22 $188 ,268 . 35 $78,776.22 $188 , 268 . 35 
12 $186 , 635 . 49 $77 , 843 . 86 $186 , 635. 49 $77,843 . 86 $186 , 635.49 
13 $184,953 .64 $76 , 883 . 53 $184 , 953 . 64 $76,883 . 53 $184 , 953 . 64 
14 $183,221 . 35 $75,894 . 39 $183,221 . 35 $75,894 . 39 $183,221.35 
15 $181 , 437 . 08 $74,875 . 57 $181,437 . 08 $74,875.57 $181 , 437 . 08 
16 $179,599.28 $73,826 . 19 $179,599.28 $73,826.19 $179,599 . 28 
17 $177,706.35 $72,74 5 . 32 $177,706.35 $72,745 . 32 $177,706.35 
18 $175,756 . 63 $71,632 . 03 $175,756 . 63 $71,632 . 03 $175,756.63 
19 $173,748 . 42 $70,485 . 35 $173,748.42 $70,485.35 $173,748.42 
20 $171 , 679 . 97 $69,304 .26 $171,679 . 97 $69,304 . 26 $171,679.97 
21 $276,786 . 46 $129,320.07 $276 , 786 . 46 $129 ,32 0 . 07 $276 , 786 . 46 
22 $274,592.04 $128,067 . 05 $274,592 . 04 $128 , 067 . 05 $274,592 . 04 
23 $272,331 . 78 $126,776.44 $272, 331. 78 $126,776.44 $272,331 . 78 
24 $270,003.71 $125,447.l.2 $270,003 . 71 $125 , 447 . l.2 $270,003 . 71 
25 $ 267,605.80 $124 , 077 . 91 $267 , 605 . 80 $124 '077 . 91 $267,605 . 80 

$5,107,008 . 84 $4,157,712 . 40 $6 , 419,896 . 37 $2,844 , 824 . 89 $5 , 107,008 . 84 
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Figure 21. Comparison of cash flow for 1500 kW turbine 

1 Investor Owned Utility ( IOU) with PTC, based on a 1500 kW turbine, 80 meter rotor diameter, 80 meter height, and wind speed of 8.02 
mis 
2 Municipal Utility (MU) with REPI, based on a 1500 kW turbine, 80 meter rotor diameter, 80 meter height, and wind speed of 8.02 mis 
: IOU ~thout PTC, based on a 1500 kW turbine, 80 meter rotor diameter, 80 meter height, and wind speed of8.02 mis 

MU without REPI, based on a 1500 kW turbine, 80 meter rotor diameter, 80 meter height, and wind speed of8.02 mis 
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Table 31. 'A' Scenarios - financial costs and returns per kWh 

Year Cost ' Income Model l.A' Model 2A' Model 3A" 
Before Taxes 

1 $0.0504 $0 . 0046 $0.0079 $0.0225 - $0 . 0100 
2 $0 . 0508 $0.0042 $0 . 0081 $0 . 0227 - $0.0104 
3 $0 . 0466 $0.0083 $0 . 0128 $0.0274 -$0 . 0062 
4 $0 . 0470 $0 . 0079 $0 . 0129 $0 . 0275 - $0 . 0066 
5 $0 . 0474 $0 . 0075 $0.0131 $0 . 0277 - $0.0070 
6 $0 . 0479 $0. 0071 $0 . 0133 $0.0279 - $0.0075 
7 $0 . 0483 $0.0066 $0 . 0135 $0 . 0281 -$0 . 0079 
8 $0 . 0488 $0 . 0062 $0 . 0137 $0 . 0283 - $0 . 0084 
9 $0.0492 $0.0057 $0 . 0139 $0 . 0285 - $0.0088 

10 $0 . 0497 $0 . 0052 $0 . 0141 $0.0287 - $0 . 0093 
11 $0 . 0502 $0.0047 -$0 . 0106 $0 . 0047 -$0.0106 
12 $0 . 0507 $0.0042 - $0 . 0110 $0 . 0042 - $0.0110 
13 $0 . 0513 $0.003 7 - $0 . 0115 $0 . 0037 - $0 . 0115 
14 $0 . 0518 $0.0031 -$0.0119 $0 . 0031 - $0.0119 
15 $0.0524 $0.0026 -$0.0124 $0.0026 - $0 . 0124 
16 $0 . 0529 $0 . 0020 -$0 . 0129 $0 . 0020 - $0.0129 
17 $0.0535 $0 . 0014 - $0 . 0134 $0 . 0014 - $0 . 0134 
18 $0 . 0541 $0.0008 -$0.0139 $0.0008 -$0.0139 
19 $0 . 0548 $0 . 0002 - $0 . 014 4 $0 . 0002 - $0 . 0144 
20 $0 . 0554 - $0 . 0005 - $0 . 0151 - $0.0005 - $0.0151 
21 $0.0229 $0.0321 $0. 0111 $0 . 0321 $0 . 0111 
22 $0.0236 $0 . 0314 $0.0106 $0 . 0314 $0 . 0106 
23 $ 0 . 0243 $0.0307 $0 . 0101 $0 . 0307 $0 . 0101 
24 $0 . 0250 $0 . 0299 $0 . 0096 $0 . 0299 $0.0096 
25 $0.0258 $0.0292 $0 . 0090 $0 . 0292 $0 . 0090 

Scenario 'A ' (1000 kW Turt>lne) Fln•nclal Costa •nd Return•,,., kWh 
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Figure 22. 'A' Scenario (1000 kW turbine) financial costs and returns per kWh 

1 Total costs - construction, financial, and annual costs 
2 

Investor Owned Utility (IOU) with PTC, based on a 1000 kW turbine, 60 meter rotor diameter, 60 meter height, and wind speed of 7.18 
mis 
3 

Municipal Utility (MU) with REPI, based on a 1000 kW turbine, 60 meter rotor diameter, 60 meter height, and wind speed of7.18 mis 
• IOU without PTC, based on a I 000 kW turbine, 60 meter rotor diameter, 60 meter height, and wind speed of 7 .18 mis 
s M U without REPI, based on a I 000 kW turbine, 60 meter rotor diameter, 60 meter height, and wind speed of7. I 8 mis 
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Table 32. ' B' Scenarios - financial costs and returns per kWh 

Year Cost Income Model 18' Model 2B' Model 3B" Model 48' 
Before Taxes 

l $0 . 0247 $0.03021 $0.04080 $0 . 04820 $0.02280 $0.03021 
2 $0.0249 $0 .03002 $0. 04115 $0.04850 $0.02261 $0 . 03002 
3 $0 . 0236 $0.03139 $0.04295 $0 . 05040 $0 . 02386 $0 . 03139 
4 $0.0238 $0 . 03119 $0.04336 $0 . 05080 $0 . 02369 $0 . 03119 
5 $0 . 0240 $0 . 03098 $0.04377 $0 . 05120 $0.02352 $0 .03098 
6 $0.0242 $0.03077 $0 . 04420 $0 . 05160 $0.02334 $0 . 03077 
7 $0 . 0244 $0 . 03054 $0 . 04461 $0 . 05200 $0 . 02311 $0 . 03054 
8 $0 . 0246 $0 .03032 $0 . 04502 $0 . 05240 $0.02289 $0 .03032 
9 $0.0249 $0.03008 $0.04545 $0.05280 $0 . 02265 $0 . 03008 

10 $0 . 0251 $0.02984 $0.04590 $0 . 05330 $0.02241 $0.02984 
11 $0 .0254 $0 . 02959 $0.01238 $0 . 02959 $0.01238 $0 . 02959 
12 $0 .0256 $0.02933 $0.01223 $0.02933 $0.01223 $0 . 02933 
13 $0.0259 $0.02905 $0 . 01208 $0.02905 $0.01208 $0.02905 
14 $0.0262 $0 . 02880 $0.01193 $0.02880 $0 . 01193 $0 .02880 
15 $0 . 0264 $0 .02852 $0 . 01177 $0 . 02852 $0 . 01177 $0 . 02852 
16 $0 . 0267 $0.02823 $0 . 01160 $0 . 02823 $0 . 01160 $0 . 02823 
17 $0 . 0270 $0 . 02793 $0.01143 $0 . 02793 $0 . 01143 $0.02793 
18 $0.0273 $0 . 02762 $0 . 01126 $0 . 02762 $0. 01126 $0.02762 
19 $0 . 0276 $0 . 02731 $0.01108 $0 . 02731 $0 .01108 $0 .02731 
20 $0 . 0280 $0.02698 $0.01089 $0 . 02698 $0 . 01089 $0 . 02698 
21 $0 . 0114 $0.04350 $0 .02033 $0 . 04350 $0 . 02033 $0.04350 
22 $0 . 0118 $0 . 04316 $0 . 02013 $0 .04316 $0 . 02013 $0 . 04316 
23 $0 . 0121 $0 . 04280 $0 . 01993 $0.04280 $0 . 01993 $0 . 04280 
24 $0 .0125 $0.04244 $0 . 01972 $0 .04244 $0 . 01972 $0 . 04244 
25 $0 . 0129 $0 . 04206 $0.01950 $0 . 04206 $0 . 01950 $0 . 04206 

Soenark> ·a• (1500 kW Turbin•) flllnanclal Coate and "etum• per kWh 
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Figure 23. 'B' Scenario (1500 kW turbine) financial costs and returns per kWh 

1 Total costs - construction, financial, and annual costs 
2 Investor Owned Utility (IOU) with PTC, based on a 1500 kW turbine, 80 meter rotor diameter, 80 meter height, and wind speed of 8.02 
mis 
3 Municipal Utility (MU)with REP!, based on a 1500 kW turbine, 80 meter rotor diameter, 80 meter height, and wind speed of8.02 mis 
' IOU without PTC, based on a 1500 kW turbine, 80 meter rotor diameter. 80 meter height, and wind speed of 8.02 mis 
' MU without REP!, based on a 1500 kW turbine, 80 meter rotor diameter, 80 meter height, and wind speed of 8.02 mis 
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Table 33. ' A' Scenarios - cumulative tax totals by model type 

MODEL lA MODEL 2A MODEL 3A, MODEL 4A 
Cumulative Federal Taxes $67,097.52 $0 $67.097.52 $0 
Cumulative Federal Tax $455,081.62 $455,081.62 $0 $0 
Credit/Incentives 
Cumulative State Taxes $6,709 .75 $0 $6,709.75 $0 
Cumulative Property Taxes $805,000.00 $0 $805,000.00 $ 0 
Cumulative Taxes Paid $872,097 . 52 $0 $872. 097. 52 $0 
Net Tax Difference $417,015.90 -$455 ,081.62 $872. 097. 92 $0 
Cumulative Cash Flow $103,124.13 $981,931.42 - $393,107.72 $526,849.79 

Table 34. 'B ' Scenarios - cumulative cash flow by model type 

MODEL lB' MODEL 2a• MODEL 381 MODEL 48° 
cumulative Federal $984,939 . 95 $0 $98 4 ,939.95 $0 
Taxes 
cumulative Federal Tax $1 , 312,887.53 $1 ,312,887.53 $0 $0 
Credit/I ncentives 
cumulat ive State Taxes $98, 4 93.99 $0 $98,493.99 $0 
Cumulative Property $1,178,750 . 00 $0 $1,178,750.00 $0 
Taxes 
cumulative Taxes Paid $2,163,689.95 $0 $2,163,689.95 $0 
Net Tax Difference $850,802. 4 2 - $1, 312,887.53 $2,163,689.95 $0 
Cumulative Cash Flow $4,157,712.67 $6 , 419 ,896. 49 $2,84 4 , 825 .00 $5,107 , 008.95 

1 Investor Owned Utility ( IOU) with PTC, based on a 1000 kW turbine, 60 meter rotor diameter, 60 meter height., and wind speed of7.l 8 
mis 
1 Municipal Utility (MU) with REPI, based on a 1000 kW turbine, 60 meter rotor diameter, 60 meter height, and wind speed of7.18 mis 
1 IOU without PTC, based on a I 000 kW turbine, 60 meter rotor diameter, 60 meter height, and wind speed of 7 .18 mis 
' MU without REPI, based on a I 000 kW turbine, 60 meter rotor diameter, 60 meter height, and wind speed of7. I 8 mis 
1 IOU with PTC, based on a 1500 kW turbine, 80 meter rotor diameter, 80 meter height, and wind speed of 8.02 mis 
• MU with REPI, based on a 1500 kW turbine, 80 meter rotor diameter, 80 meter height, and wind speed of 8.02 mis 
' IOU without PTC, based on a 1500 kW turbine, 80 meter rotor diameter, 80 meter height, and wind speed of8.02 mis 
'MU wi thout REPI, based on a 1500 kW turbine, 80 meter rotor diameter, 80 meter height, and wind speed of8.02 mis 
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Economic benefits 

It is clear that a tax-exempt entity receiving tax credits/incentives has the highest 

cumulative cash flow, regardless of wind speed and turbine. Model 1 has a lower cumulative 

cash flow than Model 2 due to Model 1 paying federal, state, and property taxes. Scenarios A 

and B demonstrate economies of scale. As the rating of the turbine increases, the cost per 

kWh decreases. For Model 1 and Model 3, which are taxed, there would also be a difference 

in revenue per turbine as the number of turbines changed. However, for Model 2 and Model 

4, which are not taxed, the economies of scale would remain the same. In addition to the 

economic impact of tax credits/incentives, the benefits of a larger wind turbine at a site with 

a higher mean wind speed should be noted. This is shown in Tables 31 and 32 and Figures 

22 and 23. As the rating of the wind turbine increased, the income per kWh also increased. 

These models did not evaluate the effect of the state tax credit. However, from 

analyzing the benefits from the federal tax credit/incentive, similar benefits could be applied. 

This would be a decision made by each state, and could make each state a competitor in the 

energy market, and economically force other states to follow suit or be left out of the pursuit 

for the employment and other benefits that would be associated with a wind turbine(s) or 

facility. 

When comparing the ' A' scenarios, there are similarities in the cash flows. After year 

10, when the federal tax credits/incentives expired, Model 2A and Model 4A followed the 

same cash flow, while Model 1 and Model 3 followed the same cash flow. This is because 

Model 2A and Model 4A are tax-exempt entities, while Models IA and 3A are not tax-

exempt. 
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Being eligible and collecting the tax credits/incentives can make a difference in an 

economic profit of a wind turbine. Model 4A, which did not receive any tax benefits and was 

paying taxes, had a negative cumulative cash flow after 25 years. As a result, the model 

never reached the point of exceeding the initial equity investment. However, in both Model 

lA and Model 2A the cumulative cash flow did not exceed the initial equity. Model 2A had 

the highest cumulative cash flow, signaling that both tax exemption and tax 

credits/ incentives provide the best scenario for wind energy economic viability. 

Due to the lack of taxes being paid in the ' A' scenarios, the turbine values were 

changed to increase the overall revenue. During the first l 0 years, Model 28 produced the 

highest net cash flow. After year l 0 and the expiration of the tax credits/ incentives, Model 

28 and Model 48, both tax-exempt entities, have identical cash flows , while the two taxable 

entities, Model lB and Model 38, have identical cash flows. Once again, Model 2 had the 

highest cumulative cash flow, indicating that both tax exemption and tax credits/ incentives 

could promote growth in the wind energy sector. 

From Table 35, the models that receive tax credits/incentives, have two periods of 

payback. The first period is when the initial I c > £ 1 • However, after the tax credit/incentive 

period has expired, there are negative cash flows, resulting in a decreasing I c . The net cash 

flows start to increase after the turbine debt service period has been completed. For Model 1, 

the payback period is when t 8 > 25 , after the life expectancy of the turbine. However, for 

Model 2, the second payback period is when t B = 3 . The difference from Model l and 

Model 2 is that Model 1 is paying taxes while Model 2 is a tax-exempt entity. Economies of 

scaJe also exist in the size of the turbine, as demonstrated from the difference in cost of 
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Scenarios A and Scenarios B. As the rating of turbine increases, the cost per kWh decreases. 

From Table 33 and 34, Model 2B, a tax-exempt entity, exhibits a negative tax difference 

because the cumulative credits/incentives are greater than the taxes pajd. Model 4, wruch 

pays taxes and does not receive or is eligible for tax benefits exhibits the largest net tax 

differences. This wouJd be the greatest benefit to society in terms of increasing government 

revenue on a state and federal government level. 
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CHAPTER 5. CONCLUSION AND FURTHER RESEARCH 

Based on the analyses conducted, three major findings emerge from this thesis research. 

1. The lifetime cash flow analyses for each wind generation project shows four distinct 

phases. The initial period ends in year two when the warranty period for the turbines end. 

The second period ends in year ten when the tax deductions for the turbine depreciation, 

PTC, and REPI incentives end. The third period ends in 20 years when the bond repayment 

period ends. The final period represents the remaining life of the turbines when the there is 

no warranty, depreciation, or debt. 

2. The Municipal and REC Nonprofit Utilities generate a shorter payback period and 

greater cumulative cash flows than IOU or REC For Profit Utilities. This finding is 

consistent across comparisons where PTC and REPI are removed and across comparisons 

involving sensitivity analyses to two different turbine size and energy production systems. 

3. The analysis shows that the larger turbine scenarios (1500 kW) generated more cash 

flow across all four-model assumptions, than did the smaller turbine scenarios (1000 kW). 

This finding provides evidence that that supports the industry trend toward larger utility scale 

turbines. 

Suggestions for further research includes more detailed analysis of rent seeking behavior 

and organization of business entities that can accommodate use of higher levels of 

depreciation and energy incentives. A preliminary analysis of 3rd party investment suggests 

that private sector firms and possibly public sector non-profits may reduce the period of 

years required for payback on the initial investments by adding partners that can fully utilize 

depreciation and renewable energy credits and incentives. 



www.manaraa.com

94 

APPENDIX A. MODEL VARIABLES 

Term Variable Equation Default Value 
Rotor Diameter Zo; 60 meters 

Turbine Height ZH 60 meters 

Turbine Rating ZR 1000 kW 

Number of Turbines n 1 
Price P; 
Annual Price PA P; =PA x 0.01 5.5 cents/kW 

Seasonal Price Ps Pi = Sr X PS p + (1 - Sr) X PS NP 8 cents/kW for peak 
4 cents/kW for non-
oeak 

Daily Price Po P; = Dr x Pop + (1 - Dr}x PoNP 8 cents/kW for peak 
4 cents/kW for non-
peak 

Wind Speed V; v, ~v,,x( :~t 7.18 mis 

Medium Speed vm vm = v, 7/18 m/s 

Low Speed V1 vi = vm - 0.5 6.88 mis 

High Speed vh vh = vm +0.5 7.48 mis 

Energy Constant A. 
Energy production w w 
Annual Revenue R R = Wx p ; 
Interconnection Costs C1 $50000 

Planning, Legal, CA $50000 
Engineering, and Admin 
Mgt. Costs 
Construction Grants CG $0 

Total Construction Cree Cree =ZR x l 300+CA +C1 - CG 
Costs 
Equity percent EP 40% ofTCC 

3'u Part Initial E3 
Investment 
Equity Investment E1 E1 = Cree xEP 
Debt Financing percent Co C0 p = 1- EP 60% ofTCC 

p 

Debt Financing Period CD 20 Years 
T 

Debt Financing interest iD 6% 
rate 
Debt Financing CD CD= Cree -E1 



www.manaraa.com

95 

Annual Debt Service Co 
C - ( Cv xiv J A 

DA - l - (l+iotc0r 
Inflation rate r 3% 
Warranty Cw $20000 

Warranty Period Cw 2 Years 
T 

Annual Warranty Cw C - Cw $10,000 A WA-c 
W T 

O&M percent Cor 2.5% 

O&M constant CoF 
O&M Co C0 = C0 ,, xZR 
Annual O&M Co C0 =C0 x(l -rJ• $25,000 

A A 

Land Payment per year cl $3,000 per turbine 

Annual Land Payment cl Cl = Cl x (1 - rJ $3,000 
A A 

Total Costs CT Crc =Co +Cw +Cl +Co 
A A A A 

Net Cash Flow Before 
Taxes 

l g In= R-Crcc 
Cost per kWh before ck C _Cr taxes k - w 
Useful life t i 
Turbine Depreciation l z 10 Years 
Period 
Turbine Depreciation Z r Zr=( ZR ~:300 J $130,000 

Excess Depreciation TE 
Net Unused Tu Depreciation 
Passive Income I p 
Taxable Federal Income TF TF, =In -Zr Tax T 

Federal income Tax TF TF =(TF, -a;)x/J;+O; 
State income tax Ts percent p 

State income tax as Ts Ts = Ts xTF Federal Tax p 

State income tax as Ts Ts =~ xl8 Cash flow before taxes p 

Property Tax levy rate TP, $23 per $1,000 
valuation 

Property Tax percent Tp 70% 
Abated p 
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Property Tax energy Tw 
rate 
Property Tax with levy Tp _ ( Cree x r., J rate Tp - 1000 

Property Tax with Tp T ~ (Cree x TP, }-T ) abatement rate 
p 1000 ~ 

Property Tax based on Tp Tp= W x Tw 
energy generation 
Tax credit per kW Tc 1 .8 cents/kWh 

Total Tax TT TT = Tc x W 
credit/incentives 
Unused Federal l u Iv= Tr - I p 
PTC/REPI 
Cash flow I A I A = I B +Tr - TF Ts Tp 
Income per kW I k I - I A produced k - w 
Cumulative cash flow le 1, 

l e= "'fJA 
i =l 

Break Even point for l n t 8 = f c> E1 equity 
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APPENDIX B. PROOF OF BETZ's LIMIT 

This proof shows that a wind turbine can only be 16127 percent efficient. It is 

assumed that the average wind speed through the rotor area is the average of the initial wind 

speed before the wind turbine, v1 , and the wind speed after the passage through the rotor 

plane, v2 .The mass of the air streaming through the rotor during one second is: 

where m is the mass per second, pis the density of air, F is the swept rotor area, and 

Vi + v2 is the average wind speed through the rotor area. According to Newton's Second 
2 

Law, the power extracted from the wind by the rotor is equal to the m times the decrease in 

the wind speed squared: 

Substituting m from equation 1 into equation 2, the expanded power equation: 

For an undisturbed wind stream, the power generated without a rotor blocking, with rotor 

area F is: 

The ratio between the power we extract from the wind and the power in the undisturbed wind 

is then solved for !_ : 
po 
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From the plot of!_ as a function of~ the maximum is when ~ is 1/3; as a result, the 
~ ~· ~ 

most power that can be extracted is 16/27 of the total wind power. 

Betz Limit 
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APPENDIX C. STATE FINANCIAL INCENTIVES 
State Personal Corporate Sales Property Rebates Grants Loans Production 

Tax Tax Tax Tax Incentive 
Alabama x x x 
Alaska x x 
Arizona x x x 
Arkansas x 
California x x x x x x 
Colorado x x x x 
Connecticut x x x x 
Delaware x 
Florida x x x 
Georaia x x x 
Hawaii x x x x x 
Idaho x 
Illinois x x x 
Indiana x x 
Iowa x x x x x 
Kansas x x x x 
Kentucky 
Louisiana 
Maine 
Marvland x x x x x x 
Massachusetts x x x x x x 
Michiaan x 
Minnesota x x x x x x 
Mississippi x 
Missouri x x 
Montana x x x x x 
Nebraska x 
Nevada x x x 
New Hamoshire x x 
New Jersey x x 
New Mexico x 
New York x x x x x x 
North Carolina x x x x 
North Dakota x x x x 
Ohio x x x x x 
Oklahoma x 
Orea on x x x x x x 
Pennsvlvania x x x x 
Rhode Island x x x x x 
South Carolina x 
South Dakota x 
Tennessee x 
Texas x x x x 
Utah x x 
Vermont x x 
Virginia x x 
WashinQton x x x x 
West Virainia x x 
Wisconsin x x x x 
Wvomina 
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APPENDIX D. TURBINES USED FOR REGRESSIONS 

Rotor 
Turbine Rated (kW) Diameter (m) 

Whisper H-80 1 2 
Whisper 175 3.2 4.26 
Jacobs 29-20 20 8.8 
Enertech 40 40 13.4 
Windmatic 15s 65 10.4 
Nordtank 65 65 16 . 5 
Fuhrlaender FLlOO 100 21 
Vetas 225-29 225 29 
Fuhrlaender FL250 250 31 
Nordtank 300 - 31 300 31 
Nordtank 500-41 500 41 
Vestas 600-44 600 44 
NEG Mic on 750/44 750 44 
NEG Micon 750/48 750 48 
NEG Micon NM52 /900 900 52.2 
NEG 54-950 950 54.2 
GE 1 . 5 s 1500 70.5 
GE 1. 5 sl 1500 77 
NEG 72 - 1500 1500 72 
Nordex N90 - 2300 2300 90 
Nordex N80 -2500 2500 80 
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APPENDIX E. SAS OUTPUT 

All Turbines - Correlations 

All Turbines 

The CORR Procedure 

5 Variables: k D v rated h 

Simple Statistics 

Variable N Mean Std Dev Sum 

k 250 0 . 0000602 0.0000258 0 . 01506 
D 250 45.44672 24.96328 11362 
v 250 7.30387 0. 71158 1826 
rated 250 834.61 440 739.47336 208654 
h 250 55.46000 30.04495 13865 

Simple Statistics 

Va ria ble Minimum Maximum Label 

k 4 . 5732E-7 0.0000895 Constant 
D 3.00000 90.00000 Diameter 
v 5.78000 8.34000 Velocity 
rated 1.00000 2500 Rated turbine 
h 10 . 00000 115.00000 Height 

Pearson Correlation Coefficients, N 250 
Prob > lrl under HO : Rho=O 

k D v rated h 

k 1.00000 0.43038 0.2913 7 0.40576 0.29695 
Constant < .0001 < .0001 < .0001 <.0001 

D 0.43038 1.00000 0.67666 0.94822 0.70125 
Diameter < . 0001 <. 0001 <.0001 < . 0001 

v 0.29137 0.67666 1.00000 0.63603 0 . 96432 
Velocity <.0001 <.0001 <.0001 <.0001 

rated 0.40576 0 . 94822 0.63603 1.00000 0 . 66512 
Rated t u rbine < .0001 < .0001 <.0001 <.0001 

h 0.29695 0.70125 0 . 96432 0.66512 1.00000 
Height <.0001 <.0001 <. 0001 < . 0001 
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All Turbines 

The GLM Procedure 

Dependent Variable: k Constant 

Sum of 
Source DF Squares Mean Square F Value Pr > F 

Model 6 6.2364895E-8 l.0394149E-8 24.41 <.0001 

Error 243 l.0347245E-7 4 .2 58 12 6E-10 

Corrected Total 249 l.6583735E-7 

R-Square Coeff Var Root MSE k Mean 

0.376061 34.25616 0.000021 0.000060 

Standard 
Parameter Estimate Error t Value Pr > ltl 

Intercept 0 . 0000952409 0 . 00001836 5.19 <.0001 
D -.0000027381 0.00000079 -3.47 0.0006 
v -.0000051775 0.00000257 - 2.01 0 . 0453 
rated 0.0000002013 0.00000003 7 .15 < . 0001 
rd -.0000000021 0.00000000 -1 . 30 0.1956 
d2 0 . 0000000310 0 . 00000003 1. 20 0 . 2317 
r2 -.0000000000 0.00000000 -0.21 0 . 8313 
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All Turbines 

The REG Procedure 
Model: MODELl 

Dependent Variable: k Constant 

Root MSE 0.00002064 R-Square 
Dependent Mean 0.00006024 Adj R-Sq 
Coeff Var 34.25616 

Parameter Estimates 

Parameter Standard 
Label DF Estimate Error 

Intercept 1 0 .00009524 0.00001836 
Diameter 1 - 0.00000274 7.898227E-7 
Velocity 1 - 0.00000518 0.00000257 
Rated turbine 1 2.013396E-7 2 .8167 06E-8 
rated*diam 1 -2.10949E-9 l.625337E - 9 
diam sq 1 3 . 101291E-8 2.586526E-8 
Rated sq 1 -5.8835E-12 2 . 75862E-ll 

3 

0.3761 
0.3607 

t Value Pr > lt l 

5.19 <.0001 
-3.47 0.0006 
-2.01 0.0453 
7.15 <.0001 

- 1.30 0.1956 
1.20 0.2317 

-0.21 0.8313 
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Small Turbines Rated less than 50 kW 

Small Turbines Rated less than 50 kW 

The CORR Procedure 

5 Variables: k D v rated h 

Simple Statistics 

Variable N Mean Std Dev Sum 

k 32 0.0000645 0.0000126 0.00207 
D 32 7.36500 4 . 16358 235.68000 
v 32 6.64000 0.47938 212.48000 
rated 32 16.05000 15.90966 513.60000 
h 32 27 .50000 11.63975 880.00000 

Simple Statistics 

Variable Minimum Maximum Label 

k 
D 
v 
rated 
h 

k 
Constant 

D 
Diameter 

v 
Velocity 

rated 
Rated turbine 

h 
Height 

0.0000402 0.0000813 Constant 
3.00000 13.40000 Diameter 
5.78000 7 . 24000 Velocity 
1.00000 40.00000 Rated turbine 

10.00000 45.00000 Height 

Pearson Correlation Coefficients, N 32 
Prob > lrl under HO: Rho=O 

k D v rated 

1.00000 0.58848 -0.36652 0.52736 
0.0004 0.0391 0.0019 

0.58848 1. 00000 0.00000 0.99655 
0.0004 1.0000 <.000 1 

- 0.36652 0.00000 1.00000 0.00000 
0 . 0391 1.0000 1.0000 

0.52736 0.99655 0.00000 1. 00000 
0.0019 <. 0001 1.0000 

- 0.36056 0.00000 0 . 98395 0.00000 
0.0426 1 .00 00 < .0001 1.0000 

h 

- 0.36056 
0.0426 

0.00000 
1.0000 

0.98395 
< .0001 

0.00000 
1. 0000 

1.00000 



www.manaraa.com

105 

Small Turbines Rated less than 50 kW 

The GLM Procedure 

Dependent Variable : k Constant 

Sum of 
Source DF Squares Mean Square F Value Pr > F 

Model 4 4.B7743E- 9 l.2193575E-9 776.88 <.0001 

Error 27 4.237795E - 11 l.569554E - 12 

Corrected Total 31 4.9198079E - 9 

R-Square Coeff Var Root MSE k Mean 

0.991386 1. 941292 l.25282E - 6 0.000065 

Standard 
Parameter Estimate Error t Value Pr > It I 

Intercept 0.0000261780 4.351412E-6 6.02 <.000 1 
D 0.0000299787 9.3041263E - 7 32.22 <.0001 
v -.0000096318 4.693B166E- 7 -20 . 52 <.0001 
rated - . 0000081721 4.2830961E-7 -19 .08 < . 0001 
d2 0.0000001785 S.0834327E- 8 3.51 0.0016 
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Small Turbines Rated less than SO kW 

Root MSE 
Dependent 
Coeff Var 

Label 

Intercept 
Diameter 
Velocity 

The REG Procedure 
Model: MODELl 

Dependent Variable: k Constant 

0.00000125 R-Square 
Mean 0.00006454 Adj R-Sq 

1.94129 

Parameter Estimates 

Parameter Standard 
OF Estimate Error 

1 0 . 00002618 0.00000435 
1 0.00002998 9.304126E-7 
1 -0.00000963 4.693817E-7 

Rated turbine 1 -0.00000817 4.283096E-7 
diam sq 1 1.785192E-7 S.083433E-8 

0.9914 
0.9901 

t Value Pr > It I 
6.02 < . 0001 

32.22 < .0001 
-20.52 < .0001 
-19.08 < .0001 

3.51 0. 0016 
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Medium - Correlation 

Medium Turbines Rated greater than 50 kW and less than 250kW 

6 Variables: 

Variable 

k 
D 
v 
rated 
h 
d2 

k 

N 

40 
40 
40 
40 
40 
40 

The CORR Procedure 

D v rated h d2 

Simple Statistics 

Mean Std Dev Sum 

0.0000889 0.0000316 0.00356 
21.28000 7.42094 851.20000 

6.64000 0.47784 265.60000 
141.00000 81.23407 5640 

27.50000 11 . 60239 1100 
506.53200 307.86023 20261 

Simple Statistics 

Variable Minimum Maximum Label 

k 
Constant 

D 
Diameter 

v 
Velocity 

rated 

k 
D 
v 
rated 
h 
d2 

Rated turbine 

h 
Height 

d2 
d2 

0.0000573 0.0001628 Constant 
10.40000 29.50000 Diameter 

5.78000 7 . 24000 Velocity 
65.00000 250.00000 Rated turbine 
10 .00000 45.00000 Height 

108. 16000 870.25000 d2 

Pearson Correlation Coefficients, N 40 
Prob > lrl under HO: Rho=O 

k D v rated h d 2 

1.00000 -0. 58982 -0.16110 - 0.30523 -0.15929 -0.49380 
<. 0001 0.3207 0.0555 0.3262 0.0012 

- 0.58982 1 . 00000 0.00000 0 .93443 0.00000 0.99164 
<.0001 1.0000 <.0 001 1.0000 <.0001 

- 0. 16110 0.00000 1 . 00000 0.00000 0.98395 0.00000 
0.3207 1.0000 1.0000 < .0001 1 . 0000 

-0. 30523 0.93443 0.00000 1.00000 0.00000 0. 97204 
0.0555 <.000 1 1.0000 1.0000 <.0001 

-0.15929 0 . 00000 0.98395 0 . 00000 1.00000 0.00000 
0.3262 1.0000 < .0001 1.0000 1.0000 

-0 .49380 0.99164 0.00000 0. 97204 0.00000 1.00000 
0.0012 <.0001 1 . 0000 <.0001 1.0000 
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Medium Turbines Rated greater than SO kW and less than 250kW 

The GLM Procedure 

Dependent Variable: k Constant 

Sum of 
Source DF Squares Mean Square F Value Pr > F 

Model 5 3.8922977E-8 7.784 5954E-9 2923.37 <.0001 

Error 34 9 .053796E- 11 2.662881E-12 

Corrected Total 39 3 . 9013515E - 8 

R-Square Coeff Var Root MSE k Mean 

0 . 997679 1.836068 1.63183E-6 0.000089 

Standard 
Parameter Estimate Error t Value Pr > It I 

Intercept 0.0002331700 0 . 00001347 17.31 <.0001 
D - .00002498 59 0.00000120 -20.84 < .0001 
v -.0000106633 0.00000055 -19.50 <.0001 
rated 0.0000039582 0.00000012 33. 72 <.0001 
rd -.0000001295 0.00000000 - 42.53 <. 0001 
d2 0.0000007103 0.00000004 16.34 <. 0001 
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Medium Turbines Rated greater than 50 kW and less than 250kW 

Variable 

Intercept 
D 
v 
rated 
rd 
d2 

The REG Procedure 
Model: MODELl 

Dependent Variable: k Constant 

Root MSE 0.00000163 R-Square 
Dependent Mean 0.00008888 Adj R-Sq 
Coef f Var 1.83607 

Parameter Estimates 

Parameter Standard 
Label OF Estimate Error 

Intercept 1 0.00023317 0.00001347 
Diameter 1 -0.00002499 0.00000120 
Velocity 1 -0.00001066 5.468383E-7 
Rated turbine 1 0.00000396 l.173796E-7 
rated*diam 1 -1. 29499E-7 3. 04511SE-9 
diam sq 1 7.102996E-7 4.345872E-8 

0.9977 
0.9973 

t Value Pr > !ti 

17.31 <.0001 
-20. 84 <.0001 
-19.50 <.0001 
33.72 < .0001 

-42.53 <.0001 
16.34 <.0001 
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Large Turbines 

Large Turbines rated greater than 250 kW and less than 750 kW 

The CORR Procedure 

5 Variables: k D v rated h 

Simple Statistics 

Variable N Mean Std Dev Sum 

k 80 0.000074 8 6.08172E-6 0.00598 
D 80 41.60000 5.78431 3328 
v 80 7.16463 0.64171 573.17000 
rated 80 580.000 00 1 70. 1 8233 46 4 00 
h 80 47.50000 23.19428 38 00 

Simple Sta tistics 

Variab le Minimum Maximum Label 

k 0.0000648 0.0000895 Constant 
D 31.00000 48.00000 Diameter 
v 5.78000 7 . 97000 Velocity 
rated 300.00000 750.00000 Rated turbine 
h 10.00000 85.00000 Height 

Pearson Correlation Coefficients, N 80 
Prob > lrl under HO: Rho=O 

k D v rated h 

k 1 . 00000 0.02739 -0.90969 0.14625 -0 . 90072 
Con stant 0.8094 <.0001 0.1955 <. 0001 

D 0.02739 1.00000 0.00000 0.93819 0.00000 
Diameter 0.8094 1.0000 < .0001 1 . 0000 

v -0.90969 0.00000 1. 00000 0.00000 0 . 97257 
Veloci t y < . 0001 1.0000 1.0000 <.0001 

rated 0.14625 0.93819 0.00000 1.00000 0.00000 
Rat ed turbine 0.1955 <.0001 1 .0000 1.0000 

h - 0.90072 0.00000 0. 97257 0 . 00000 1. 00000 
Height <.0001 1.0000 <.0001 1.0000 
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Large Turbines rated greater than 250 kW and less than 750 kW 

The GLM Procedure 

Dependent Variable: k Constant 

Sum of 
Source DF Squares Mean Square F Value Pr > F 

Model 4 2 . 7915614E-9 6.978903E-10 401. 28 < . 000 1 

Error 75 l .304382E-10 l .73 9176E- 12 

Corrected Total 79 2.9219996E-9 

R-Square Coeff Var Root MSE k Mean 

0.955360 1. 763095 l.31878E-6 0.000075 

Standard 
Parameter Estimate Error t Value Pr > l tl 

Intercept 0.0001792675 7. 9243091E-6 22.62 <. 0001 
D - . 0000022076 4 . 06494E- 7 - 5.43 <.0001 
v - . 0000086215 2.3 121778E-7 -37 . 29 < .0001 
rated 0.0000000346 2.5586331E-9 13.51 <. 0001 
d2 0 . 0000000165 5 . 3003607E- 9 3.11 0.0026 
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Large Turbines rated greater than 250 kW and less than 750 kW 

Variable 

Intercept 
D 
v 
rated 
d2 

Root MSE 
Dependent 
Coef f Var 

Label 

Intercept 
Diameter 
Velocity 

The REG Procedure 
Model : MODELl 

Dependent Variable: k Constant 

0.00000132 R-Square 
Mean 0.00007480 Adj R-Sq 

1.76310 

Parameter Estimates 

Parameter Standard 
DF Estimate Error 

1 0.00017927 0.00000792 
1 - 0.00000221 4.06494E-7 
1 -0.00000862 2.312178E-7 

Rated turbine 1 3.456631E-8 2.558633E-9 
Diam sq 1 l.649311E - 8 S.300361E-9 

0.9554 
0.9530 

t Value Pr > ltl 

22.62 <.0001 
-5.43 <.0001 

-37.29 <. 0001 
13.51 <.0001 

3 .11 0.0026 
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Utility - Correlation 

Utility Turbines rated greater than 750 kW 

The CORR Procedure 

5 Variables: k D v rated h 

variable 

k 
D 
v 
rated 
h 

N 

98 
98 
98 
98 
98 

Simple Statistics 

Mean 

0.0000701 
70.88571 

7.90529 
1593 

81.98980 

Simple Statistics 

Std Dev Sum 

4 . 1642E-6 0.00687 
12.62785 6 94 7 

0.30105 774 . 71800 
568.86576 156100 

20.87938 8035 

Variable Minimum Maximum Label 

k 
Constant 

D 
Diameter 

v 
Velocity 

rated 

k 
D 
v 
rated 
h 

Rated turbine 

h 
Height 

0. 0000613 0.0000795 
52.20000 90.00000 

7.36000 8.34000 
900.00000 2500 

50.00000 115 . 00000 

Pearson Correlation Coefficients, 
Prob > lrl under HO: Rho=O 

k D v 

1 . 00000 -0.15289 -0.72757 
0.1329 <.0001 

-0.15289 1 .00000 0.00000 
0.1329 1.0000 

-0.72757 0.00000 1.00000 
< .0001 1.0000 

0.11761 0.89668 0.00000 
0.2488 <.0001 1.0000 

- 0.70465 0.03203 0.98424 
<.0001 0.7542 <.0001 

Constant 
Diameter 
Velocity 
Rated turbine 
Height 

N 98 

rated h 

0.11761 -0 . 70465 
0.2488 <.0001 

0.89668 0 . 03203 
<.000 1 0 . 7542 

0.00000 0.98424 
1.0000 <.0001 

1 . 00000 0.02790 
0.7851 

0.02790 1.00000 
0.7851 
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Utility Turbi nes rated greater than 750 kW 

The GLM Proc edure 

Dependent Variable: k Constant 

Sum of 
Source DF Squares Mean Square F Value Pr > F 

Model 6 l.6700745E-9 2.783457E-10 2117.45 <. 0001 

Error 91 l.196227E- 11 l .314536E-13 

Corrected Total 97 l.6820368E-9 

R- Square Coeff Var Root MSE k Mean 

0 . 992888 0.517533 3 . 62565E - 7 0.000070 

Standard 
Parameter Estimate Error t Value Pr > I t I 
Intercept 0.0005694858 0.00001280 44. 48 < . 0001 
D -.0000208645 0 . 00000064 - 32.62 <.0001 
v -.0000100639 0.00000012 - 82 . 30 < . 0001 
rated 0.0000004543 0.00000001 33.38 <. 0001 
rd - . 0000000050 0.00000000 - 28.56 < . 0001 
d2 0.0000001870 0 . 00000001 30 . 62 < . 0001 
r2 -.0000000000 0 . 00000000 -16.82 <. 0001 
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Utility Turbines rated greater than 750 kW 

The REG Proc edure 
Model: MODELl 

Dependent Variable: k Constant 

Root MSE 3.625653E-7 R-Square 
Dep e ndent Mean 0.00007006 Adj R- Sq 
Coef f Var 0 . 51753 

Parameter Estimates 

Parameter Standard 
Label DF Estimate Error 

Intercept 1 0.00056949 0.00001280 
Diameter 1 -0 .00002086 6.397031E-7 
Velocity 1 -0 . 00001006 l.222819E-7 
Rated turbine 1 4.54316E-7 l.361062E-8 
rated*daim 1 -5.04175E - 9 1.76534E-10 
diam sq 1 l.869958E-7 6 . 107461E- 9 
rated sq 1 -l. 12B6E- ll 6.71071E-13 

0.9929 
0.9924 

t Value 

44 . 48 
-32.62 
-82.30 
33.38 

-28.56 
30.62 

-16.82 

Pr > It I 

<.0001 
< .0001 
< .0001 
<.0001 
< .0001 
<. 0001 
< . 0001 
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APPENDIX F. COMPARISON OF PAYBACK PERIODS 
Pav back Period Model 1 Model 2 Model 3 Model 4 
Scenario A' ls > 25 18 > 25 Is> 25 ls > 25 
Scenario B" ls= 4 18 = 4 ls= 6 ls = 6 
Scenario C" ts= 6 ts = 3 ls > 25 ts = 11 

ts > 25 
Scenario Dq ls= 1 ls = 1 ls= 2 ts= 2 

1 1000 kW rurbinc, 60 meter rotor diameter, 60 meu:r height, wind speed of7.18 mis 
1 1500 kW rurbinc, 80 meter rotor diameter, 80 meter height, wind speed of8.02 
> I 000 kW turbine, 60 meter rotor diameter, 60 meter height, wind speed of 7 .18 mis. 30 percent 3rd pany investment, $50,000 Excess 
depreciation, $75,000 Passive income 
• 1500 kW turbine, 80 meter rotor d iameter, 80 meter height, wind speed of 8 02 mis, 30 percent 3rd pany investment, S50,000 Excess 
depreciation, S75.000 Passive income 
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